
MapInfo MapBasic
v. 8.0

User Guide

Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor or its representatives. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, without the written permission of MapInfo Corporation,
One Global View, Troy, New York 12180-8399.
© 2005 MapInfo Corporation. All rights reserved. MapInfo, MapInfo Professional, MapBasic, StreetPro and the MapInfo logo are trademarks of MapInfo Corporation and/or
its affiliates.
MapInfo Corporate Headquarters:
Voice: (518) 285-6000
Fax: (518) 285-6060
Sales Info Hotline: (800) 327-8627
Government Sales Hotline: (800) 619-2333
Technical Support Hotline: (518) 285-7283
Technical Support Fax: (518) 285-6080
Contact information for North American offices is located at: http://www.mapinfo.com/company/company_profile/index.cfm.
Contact information for worldwide offices is located at: http://www.mapinfo.com/company/company_profile/worldwide_offices.cfm.
Contact information for European and Middle East offices is located at: http://www.mapinfo.co.uk.
Contact information for Asia Pacific offices is located at: http://www.mapinfo.com.au.
Adobe Acrobat® is a registered trademark of Adobe Systems Incorporated in the United States.
Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the benefit of the trademark
owner, with no intent to infringe on the trademark.
libtiff © 1988-1995 Sam Leffler, copyright © Silicon Graphics, Inc.
libgeotiff © 1995 Niles D. Ritter.
Portions © 1999 3D Graphics, Inc. All Rights Reserved.
HIL - Halo Image Library™ © 1993, Media Cybernetics Inc. Halo Imaging Library is a trademark of Media Cybernetics, Inc.
Portions thereof LEAD Technologies, Inc. © 1991-2005. All Rights Reserved.
Portions © 1993-2005 Ken Martin, Will Schroeder, Bill Lorensen. All Rights Reserved.
Blue Marble © 1993-2005
ECW by ER Mapper © 1993-2005
VM Grid by Northwood Technologies, Inc., a Marconi Company © 1995-2004™.
Portions © 2005 Earth Resource Mapping, Ltd. All Rights Reserved.
MrSID, MrSID Decompressor and the MrSID logo are trademarks of LizardTech, Inc. used under license. Portions of this computer program are (c) 1995–1998 LizardTech
and/or the university of California or are protected by US patent nos. 5,710,835; 5,130,701; or 5,467,110 and are used under license. All rights reserved. MrSID is protected
under US and international patent & copyright treaties and foreign patent applications are pending. Unauthorized use or duplication prohibited.
Universal Translator by Safe Software, Inc. © 2004.
Crystal Reports ® is proprietary trademark of Crystal Decisions. All Rights Reserved.
Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the benefit of the trademark
owner, with no intent to infringe on the trademark.

May 2005

http://www.mapinfo.com/company/company_profile/index.cfm
http://www.mapinfo.com/company/company_profile/worldwide_offices.cfm

Table of Contents

Chapter 1: Getting Started . 13
Hardware & Software Requirements . 14

Compatibility with Previous Versions . 14
Installing the MapBasic Development Environment . 14

Starting MapBasic . 14
MapBasic File Names and File Types . 15
MapBasic Documentation Set . 16

MapBasic® Reference . 16
Installing Online Documentation . 16

Conventions Used in This Manual. 16
Terms. 16
Typographical Conventions . 17
Register Today! . 17
Working with Technical Support . 17
Before You Call . 17
The Support Tracking System . 18
Expected Response Time . 18
Exchanging Information . 18
Software Defects . 18
Other Resources . 18

Chapter 2: New and Enhanced MapBasic Statements and Functions. 20
Enhanced MapBasic Functions and Statements . 37

Enabling Transparent Patterns on Same Layer. 47
Export Windows to Additional Formats . 47

Chapter 3: A Quick Look at MapBasic . 49
Getting Started . 50

How Do I Create and Run a MapBasic Application? . 51
What Are the Key Features of MapBasic? . 51

MapBasic Lets You Customize MapInfo . 51
MapBasic Lets You Automate MapInfo . 51
MapBasic Provides Powerful Database-Access Tools . 52
MapBasic Lets You Connect MapInfo To Other Applications . 52

How Do I Learn MapBasic? . 52
The MapBasic Window in MapInfo . 54

Training and On-Site Consulting . 54

User Guide Table of Contents
Chapter 4: Using the Development Environment . 56
Introduction to MapBasic Development Environment . 57
Editing Your Program . 57

Keyboard Shortcuts . 57
Limitations of the MapBasic Text Editor . 59

Compiling Your Program . 60
A Note on Compilation Errors. 61
Running a Compiled Application . 61
Using Another Editor to Write MapBasic Programs . 61

Linking Multiple Modules Into a Single Project . 62
What is a MapBasic Project File? . 62
Creating a Project File . 64
Compiling and Linking a Project . 64
Calling Functions or Procedures From Other Modules . 65

Menu Summary in MapBasic Development Environment . 66
The Edit Menu . 67
The Search Menu . 68
The Project Menu . 69
The Window Menu . 70
The Help Menu . 70

Chapter 5: MapBasic Fundamentals . 71
General Notes on MapBasic Syntax . 72

Comments . 72
Case-Sensitivity . 72
Continuing a Statement Across Multiple Lines . 72
Codes Defined In mapbasic.def . 72
Typing Statements Into the MapBasic Window . 73
Variables. 73
Fixed-length and variable-length String variables . 75
Array Variables . 75
Custom Data Types (Data Structures) . 76
Global Variables . 77
Scope of Variables . 78

Expressions . 78
What is a Constant? . 78
What is an Operator? . 79
What is a Function Call?. 79
A Closer Look At Constants . 80
Variable Type Conversion . 83
A Closer Look At Operators . 83
MapBasic Operator Precedence . 86

Looping, Branching, and Other Flow-Control. 87
If...Then Statement . 87
Do Case Statement . 88
GoTo Statement . 89
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 4 MB_UG.pdf

User Guide Table of Contents
For...Next Statement . 90
Do...Loop . 90
While...Wend Loop . 91
Ending Your Program. 91
Ending Your Program and MapInfo Professional . 91

Procedures. 92
Main Procedure . 92
Calling a Procedure . 92
Calling a Procedure That Has Parameters. 93
Passing Parameters By Reference . 93
Passing Parameters By Value . 93
Calling Procedures Recursively . 94

Procedures That Act As System Event Handlers . 95
What Is a System Event? . 95
What Is an Event Handler?. 95
When Is a System Event Handler Called? . 97

Tips for Handler Procedures . 98
Keep Handler Procedures Short. 98
Selecting Without Calling SelChangedHandler . 98
Preventing Infinite Loops . 98
Custom Functions . 99
Scope of Functions. 99

Compiler Instructions . 100
The Define Statement . 100
The Include Statement . 100

Program Organization . 102

Chapter 6: Debugging and Trapping Runtime Errors . 103
Runtime Error Behavior . 104
Debugging a MapBasic Program . 104

Summary of the Debugging Process . 105
Limitations of the Stop Statement. 105
Other Debugging Tools . 106

Error Trapping . 106
Example of Error Trapping . 107

Chapter 7: Creating the User Interface . 108
Introduction to MapBasic User Interface Principles . 109
Event-Driven Programming . 109

What Is an Event? . 109
What Happens When The User Generates A Menu Event? . 109
How Does a Program Handle ButtonPad Events? . 110
How Does a Program Handle Dialog Events? . 111

Menus . 111
Menu Fundamentals. 111
Adding New Items To A Menu . 112
Removing Items From A Menu . 112
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 5 MB_UG.pdf

User Guide Table of Contents
Creating A New Menu . 113
Altering A Menu Item . 114
Re-Defining The Menu Bar . 116
Specifying Language-Independent Menu References . 116
Customizing MapInfo Professional’s Shortcut Menus . 117
Assigning One Handler Procedure To Multiple Menu Items. 117
Simulating Menu Selections . 118
Defining Shortcut Keys And Hot Keys . 118
Controlling Menus Through the MapInfo Professional Menus File . 119

Standard Dialog Boxes . 121
Displaying a Message . 121
Asking a Yes-or-No Question . 121
Selecting a File . 122
Indicating the Percent Complete . 122
Displaying One Row From a Table. 122

Custom Dialog Boxes . 123
Sizes and Positions of Controls . 124
Control Types . 125
Specifying a Control’s Initial Value . 127
Reading a Control’s Final Value . 127
Responding to User Actions by Calling a Handler Procedure . 128
Enabled / Disabled Controls . 128
Letting the User Choose From a List . 129
Managing MultiListBox Controls . 129
Specifying Shortcut Keys for Controls . 130
Terminating a Dialog Box . 130

Windows. 131
Specifying a Window’s Size and Position. 132
Map Windows. 132
Using Animation Layers to Speed Up Map Redraws . 133
Sample Program. 133
Performance Tips for Animation Layers . 133
Browser Windows. 134
Graph Windows . 135
Layout Windows . 135
Redistrict Windows . 136
Message Window . 136

ButtonPads (Toolbars) . 138
What Happens When The User Chooses A Button? . 138
MapBasic Statements Related To ButtonPads . 138
Create ButtonPad. 139
Alter ButtonPad . 139
Alter Button . 139
CommandInfo() . 139
ToolHandler . 139
Creating A Custom PushButton . 140
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 6 MB_UG.pdf

User Guide Table of Contents
Adding A Button To The Main ButtonPad . 140
Creating A Custom ToolButton . 141
Choosing Icons for Custom Buttons . 142
Selecting Objects by Clicking With a ToolButton . 143
Including Standard Buttons in Custom ButtonPads . 143
Assigning Help Messages to Buttons . 144
Docking a ButtonPad to the Top of the Screen . 145
Other Features of ButtonPads . 145

Integrating Your Application Into MapInfo Professional . 145
Loading Applications Through the Startup Workspace . 146
Manipulating Workspaces through MapBasic . 147

Performance Tips for the User Interface . 147
Animation Layers . 147
Avoiding Unnecessary Window Redraws. 147
Purging the Message Window . 148

Chapter 8: Working With Tables . 149
Opening Tables Through MapBasic . 150

Determining Table Names at Runtime . 150
Opening Two Tables With The Same Name . 150
Opening Non-Native Files As Tables . 151

Reading Row-And-Column Values From a Table . 152
Alias Data Types as Column References. 153
Scope . 154
Using the “RowID” Column Name To Refer To Row Numbers . 155
Using the “Obj” Column Name To Refer To Graphic Objects . 155
Finding Map Addresses In Tables . 156
Geocoding . 156
Performing SQL Select Queries . 156
Error Checking for Table and Column References. 156

Writing Row-And-Column Values to a Table. 157
Creating New Tables . 157

Modifying a Table’s Structure . 157
Creating Indexes and Making Tables Mappable . 158
Reading A Table’s Structural Information. 159
Working With The Selection Table . 159
Changing the Selection . 160
Updating the Currently-Selected Rows . 161
Using the Selection for User Input . 161

Accessing the Cosmetic Layer. 162
Accessing Layout Windows . 162
Multi-User Editing . 163

The Rules of Multi-User Editing . 163
Preventing Conflicts When Writing Shared Data . 165
Opening a Table for Writing . 166

Files that Make Up a Table . 166
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 7 MB_UG.pdf

User Guide Table of Contents
Raster Image Tables . 167
Working With Metadata . 169

What is Metadata? . 169
What Do Metadata Keys Look Like? . 169
Examples of Working With Metadata . 170

Working With Seamless Tables . 171
What is a Seamless Table? . 171
How Do Seamless Tables Work?. 172
MapBasic Syntax for Seamless Tables . 172
Limitations of Seamless Tables . 173

Accessing DBMS Data . 173
How Remote Data Commands Communicate with a Database. 173
Connecting and Disconnecting. 174

Accessing/Updating Remote Databases with Linked Tables . 175
Live Access to Remote Databases. 176

Performance Tips for Table Manipulation . 176
Minimize Transaction-File Processing . 176
Use Indices Where Appropriate . 177
Using Sub-Selects . 177
Optimized Select Statements . 177
Using Update Statements. 177

Chapter 9: File Input/Output. 178
Overview of File Input/Output. 179
Sequential File I/O . 180

Random File I/O . 182
Binary File I/O . 182

Platform-Specific & International Character Sets. 182
File Information Functions . 183

Chapter 10: Graphical Objects. 184
Using Object Variables . 185
Using the “Obj” Column . 185

Creating an Object Column . 186
Limitations of the Object Column . 186

Querying An Object’s Attributes . 187
Object Styles (Pen, Brush, Symbol, Font) . 188
Understanding Font Styles . 189
Style Variables . 190
Selecting Objects of a Particular Style . 191

Creating New Objects . 193
Object-Creation Statements . 193
Object-Creation Functions . 194
Creating Objects With Variable Numbers of Nodes . 194
Storing Objects In a Table . 195
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 8 MB_UG.pdf

User Guide Table of Contents
Creating Objects Based On Existing Objects . 196
Creating a Buffer . 196
Using Union, Intersection, and Merge . 196
Creating Offset Copies . 197

Modifying Objects . 197
General Procedure for Modifying an Object . 197
Repositioning An Object . 198
Moving Objects and Object Nodes . 198
Modifying An Object’s Pen, Brush, Font, or Symbol Style . 198
Converting An Object To A Region or Polyline . 198
Erasing Part Of An Object . 199
Points Of Intersection . 199

Working With Map Labels . 199
Turning Labels On . 199
Turning Labels Off . 200
Editing Individual Labels. 200
Querying Labels . 200
Other Examples of the Set Map Statement . 201
Differences Between Labels and Text Objects. 201

Coordinates and Units of Measure . 203
Units of Measure . 204

Advanced Geographic Queries . 205
Using Geographic Comparison Operators . 205
Querying Objects in Tables . 206
Using Geographic SQL Queries With Subselects . 207
Using Geographic Joins . 208
Proportional Data Aggregation . 209

Chapter 11: Advanced Features of Microsoft Windows . 210
Declaring and Calling Dynamic Link Libraries (DLLs) . 211

Specifying the Library . 211
Passing Parameters . 212
Calling Standard Libraries . 212
Calling a DLL Routine by an Alias . 212
Array Arguments. 213
User-Defined Types . 213
Logical Arguments . 213
Handles . 214
Example: Calling a Routine in KERNEL . 214
Troubleshooting Tips for DLLs . 215

Creating Custom Button Icons and Draw Cursors. 216
Reusing Standard Icons . 216
Custom Icons . 217
Custom Draw Cursors for Windows . 218
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 9 MB_UG.pdf

User Guide Table of Contents
Inter-Application Communication Using DDE . 218
Overview of DDE Conversations . 218
How MapBasic Acts as a DDE Client . 218
How MapInfo Acts as a DDE Server . 220
How MapInfo Handles DDE Execute Messages . 222
Communicating With Visual Basic Using DDE. 223
Examples of DDE Conversations . 223
DDE Advise Links. 223

Incorporating Windows Help Into Your Application. 223

Chapter 12: Integrated Mapping . 225
What Does Integrated Mapping Look Like? . 226
Conceptual Overview of Integrated Mapping . 227
Technical Overview of Integrated Mapping. 228

System Requirements . 228
Other Technical Notes . 228

A Short Sample Program: “Hello, (Map of) World” . 229
A Closer Look at Integrated Mapping . 229

Sending Commands to MapInfo . 230
Querying Data from MapInfo . 230
Customizing MapInfo’s Shortcut Menus . 235
Terminating Your Visual Basic Program. 236
A Note About MapBasic Command Strings . 236
A Note About Dialog Boxes . 237
A Note About Accelerator Keys . 237

Using Callbacks to Retrieve Info from MapInfo . 237
Technical Requirements for Callbacks . 238
General Procedure for Using OLE Callbacks . 238
Processing the Data Sent to a Callback . 239
C/C++ Syntax for Standard Notification Callbacks . 240

Alternatives to Using OLE Callbacks. 241
DDE Callbacks . 241
MBX Callbacks . 242
Displaying Standard MapInfo Help . 242
Disabling Online Help . 242
Displaying a Custom Help File . 242

Related MapBasic Statements and Functions . 243
MapInfo Command-Line Arguments . 253

Getting Started with Integrated Mapping and Visual C++ with MFC . 254
Add OLE Automation Client Support . 255
Create the MapInfo Support class, and create an instance of it. 255
Test your work . 256
Redefine the Shortcut Menus . 256
Reparenting MapInfo’s Dialogs . 256
Adding a Map to your View. 257
Adding a Map Menu Command . 258
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 10 MB_UG.pdf

User Guide Table of Contents
Adding Toolbar Buttons and Handlers . 258
Using Exception Handling to Catch MapInfo Errors . 260
Add OLE Automation Server Support. 260
Adding the WindowContentsChanged Callback. 261

Learning More . 261

Appendix A: Sample Programs . 262
Samples\Delphi Folder . 263
Samples DLLEXAMP Folder . 263
Samples\MFC Folder . 268
Samples\PwrBldr Folder . 268
Samples\VB4 Folder . 268
Samples\VB6 Folder . 269

Appendix B: Summary of Operators . 270
Numeric Operators . 271
Comparison Operators . 272
Logical Operators . 272
Geographic Operators. 273

Precedence . 274
Automatic Type Conversions. 275

Appendix C: List of MapBasic Changes by Version . 276
Features Introduced or Changed in MapBasic 7.8 . 277
Features Introduced in MapBasic 7.5 . 278
Features Introduced in MapBasic 7.0 . 278

Appendix D: Supported ODBC Table Types. 280
Appendix E: Making a Remote Table Mappable. 281

Prerequisites for Storing/Retrieving Spatial Data . 282
Creating a MapInfo Map Catalog . 282

Appendix F: Data Setting and Management . 284
Upgrading Applications from Versions Prior to 6.5 . 285

A Glossary for Upgrading Applications. 286
Application Data Files and Directories . 287
Default Preferences Paths . 289
Registry Changes . 289
Installer Requirements and Group Policies . 290

MapBasic 6.5 . 290
MapBasic 7.0 . 290

Appendix GL: MapBasic Glossary . 291
Index. 299
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 11 MB_UG.pdf

User Guide Table of Contents
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 12 MB_UG.pdf

1
Getting Started
Welcome to the MapBasic Development Environment 8.0, the powerful,
yet easy-to-use programming language that lets you customize and
automate MapInfo Professional.

The following pages tell you what you need to know to install the
MapBasic software. For information on the purpose and capabilities of
MapBasic, see Chapter 3: A Quick Look at MapBasic.

Sections in this Chapter:

Hardware & Software Requirements. 14
Installing the MapBasic Development Environment 14
MapBasic File Names and File Types 15
MapBasic Documentation Set . 16
Conventions Used in This Manual . 16

User Guide Chapter 1: Getting Started
Hardware & Software Requirements

Before installing MapBasic for Windows, please make certain that your computer meets the following
minimum requirements:

Compatibility with Previous Versions
MapInfo Professional can run applications created with current or earlier versions of MapBasic.

See Appendix C: List of MapBasic Changes by Version for more information about backwards
compatibility.

Installing the MapBasic Development Environment

Before You Begin
The MapBasic installation procedure is described below. If you haven’t already done so:

• Install MapInfo Professional before you install MapBasic. Please see the MapInfo Professional
User Guide for installation instructions.

• Write your MapBasic serial number in an easy-to-remember place, such as the title page of the
manual.

Installation
1. From the MapBasic CD, choose Install MapBasic and follow the on-screen installation.

 The default location for MapBasic is a directory inside the MapInfo directory (for example,
C:\ProgramFiles\MAPINFO\MAPBASIC\MAPBASIC.EXE).

If the CD does not automatically start, from the CD drive, click SETUP.

Starting MapBasic
To start the MapBasic Development Environment,

1. Run the WINDOWS PROGRAM MANAGER.
2. To run MapBasic, choose MAPBASIC from the MapInfo Program Group.

Note: You can check for product updates to your version anytime by selecting HELP > CHECK FOR
UPDATE.

Requirement Your choices are:

System Software Microsoft Windows XP/2000/98 or Windows NT 4.0/2000

Display Any display adapter supported by Windows

Mouse Any mouse or pointing device supported by Windows

Disk space 10 MB
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 14 MB_UG.pdf

User Guide Chapter 1: Getting Started
MapBasic File Names and File Types

The MapBasic installation procedure places these files on your computer:

As you use the MapBasic development environment, you produce files with the following extensions:

File Name Description

errors.doc: Text file listing MapBasic error codes

mapbasic.exe: executable file which runs the MapBasic development environment

mapbasic.def: Include file containing standard define codes

menu.def: Include file containing menu-related define codes

icons.def: Include file containing ButtonPad- and cursor-related define codes

mapbasic.hlp: MapBasic on-line help file

mapbasic.h: Header file for C/C++ programmers; contents similar to mapbasic.def, but
using C/C++ syntax

mapbasic.bas: Header file for Visual Basic programmers; contents similar to mapbasic.def,
but using Visual Basic syntax

mapbasic65.isu Uninstall log file -- needed to properly uninstall MapBasic.

mbres650.dll Part of the software; contains resources such as strings and dialogs.

milib650.dll Part of the software; contains XVT executable code

papersize.def Include file for use by MB application developers; contains defines for use
with printer control MapBasic statements

usrinfmb.log Contains log of installation process.

samples folder contains filename.mb, filename.mbp: sample programs;

File Name Description

filename.mb Program files (source code)

filename.mbx Compiled (executable) files

filename.mbp Project files (which list all modules to include in a project)

filename.mbo Object files (files created after compiling modules in a project)

filename.err Error listings, generated if you compile a program that has compilation
errors.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 15 MB_UG.pdf

User Guide Chapter 1: Getting Started
MapBasic Documentation Set

In addition to the User Guide, MapBasic’s documentation set includes an online version of this guide,
online MapBasic Reference, and online Help.

MapBasic® Reference
The MapBasic online Reference is a complete guide to all MapBasic commands. See Using the
MapBasic Window, for a discussion of which MapBasic commands can be used.

Installing Online Documentation
Access the online MapBasic Reference or User Guide directly from the MapBasic CD, or install the
Adobe® Acrobat Reader to access the files locally.

Choose to access either of the online manuals directly from the CD.

To install the documentation locally:

1. Install the Acrobat® Reader.
2. Copy the files from the [CD_ROM]:\PDF_DOCS folder to a local directory.

mb70ug.pdf is this Guide and requires ~8 MB of disk space.

mb_ref.pdf is the MapBasic Reference Guide and requires ~10 MB of disk space.

3. From Windows Explorer, double-click on either file to automatically launch the Acrobat®
Reader and the online books.

Conventions Used in This Manual

This manual uses the following terms and typographical conventions.

Terms
This manual addresses the application developer as you, and refers to the person using an application
as the user. For example:

You can use MapBasic’s Note statement to give the user a message.

The terms program and application are used in the following manner:

A program is a text file typed in by you, the programmer. Typically, MapBasic program files have the
extension .MB.

An application file is a binary file executable by MapInfo. The application file must be present when the
user runs the application. MapBasic creates the application file when you compile your program.
MapBasic application files typically have the extension .MBX (MapBasic eXecutable).

A command is an item that you choose from a menu. For example, to open a file, choose the Open
command from the File menu.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 16 MB_UG.pdf

User Guide Chapter 1: Getting Started
A statement is an instruction you can issue from a MapBasic program. For example, a MapBasic
program can issue a Select statement to select one or more rows from a table.

Typographical Conventions
The Courier font shows sample MapBasic program statements:

Note ”hello, world!”

Bold Capitalization identifies MapBasic keywords:

The Stop statement is used for debugging purposes.

In the examples that appear in this manual, the first letter of each MapBasic language keyword is
capitalized. However, you are not required to use the same capitalization when you type in your own
programs. If you prefer, you can enter your programs using upper case, lower case or mixed case.

References to menu commands in the MapBasic development environment use the greater-than sign
(>), as in the following example:

• Choose the File > New command to open a new edit window.

The expression “File > New” refers to the New command on the File menu.

Register Today!
If you haven’t already done so, please fill in your product registration card. If you register, you can
receive newsletters and information about future upgrades.

Working with Technical Support
Technical Support is here to help you, and your call is important. This section lists the information you
need to provide when you call your local support center. It also explains some of the technical support
procedures so that you will know what to expect about the handling and resolution of your particular
issue.

Before You Call
Please have the following information ready when contacting us for assistance on MapInfo
Professional.

1. Serial Number. You must have a registered serial number to receive Technical Support.
2. Your name and organization. The person calling must be the contact person listed on the

support agreement.
3. Version of the product you are calling about.
4. The operating system name and version.
5. A brief explanation of the problem. Some details that can be helpful in this context are:

• Error messages
• Context in which the problem occurs
• Consistency - is the problem reoccurring or occurring erratically?
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 17 MB_UG.pdf

User Guide Chapter 1: Getting Started
The Support Tracking System
The Support Tracking System is used internally by the Technical Support department to manage and
track customer issues. The system also provides the ability to track calls with accountability. This
system helps Tech Support respond to all customer issues effectively, efficiently, and fairly.

Expected Response Time
Most issues can be resolved during the customer’s initial call. If this is not possible, a response will be
issued before the end of the business day. A Technical Support representative will provide a status
each business day until the issue is resolved.

Support requests submitted by e-mail are handled using the same guidelines as telephone support
requests; however, there is an unavoidable delay of up to several hours for message transmission and
recognition.

Exchanging Information
Occasionally a Technical Support representative will ask you to provide sample data in order to
duplicate your scenario. In the case of our developer tools (such as MapX and MapXtreme), a small
subset of sample code may be requested to help duplicate the issue.

The preferred method of exchanging information is either via e-mail or our FTP site. Use following e-
mail addresses:

• United States - techsupport@mapinfo.com
• Europe - support-europe@mapinfo.com
• Australia - ozsupport@mapinfo.com

Software Defects
If the issue is deemed to be a bug in the software, the representative will log the issue in MapInfo
Corporation’s bug base and provide you with an incident number that can be used to track the bug.
Future upgrades and patches have fixes for many of the bugs logged against the current version.

Other Resources

MapInfo Test Drive Center
The Test Drive Center on MapInfo Corporation’s Web site is a forum for technical users of our products
to learn about MapInfo Corporation’s latest software offerings. You can download trial versions of
software, as well as obtain patches and fixes.

You’ll need to complete a registration form to gain access to most areas of the Test Drive Center. This
is a one-time process. As new products and services become available in the Test Drive Center, you
will not need to re-register to access them. You can simply update your existing registration information
to indicate an interest in the new product.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 18 MB_UG.pdf

User Guide Chapter 1: Getting Started
MapInfo-L Archive Database
MapInfo Corporation, in conjunction with Bill Thoen, provides a web-based, searchable archive
database of MapInfo-L postings. The postings are currently organized by Discussion Threads and
Postings by Date.

Disclaimer: While MapInfo Corporation provides this database as a service to its user community,
administration of the MapInfo-L mailing list is still provided by Bill Thoen. More information on MapInfo-
L can be obtained at the MapInfo Test Drive Center (http://testdrive.mapinfo.com).

MapInfo Automated Fax Support
MapInfo Technical Support’s Automated Fax Support system puts the latest Technical Support
solutions to common technical questions into your hands almost immediately. You can access
hundreds of technical documents on MapInfo products using the system. These fax documents are
updated constantly to ensure that you are receiving the latest technical information. This service is
available 24 hours a day, 7 days a week, free of charge. No support agreement is required.

To use Automated Fax Support, all you need is a touch-tone phone and a fax machine. Here’s how:

• Call 518-285-7283, and choose option 4.
• Follow the simple instructions.
• Select a fax using a document number or receive an index of available documents.
• Enter your fax number and the selected documents will be delivered immediately.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 19 MB_UG.pdf

2
New and Enhanced
MapBasic Statements and
Functions
These are the new statements and functions available for the MapInfo
Professional 8.0 product.

Sections in this Appendix:

New MapBasic Functions and Statements. 21
Enhanced MapBasic Functions and Statements 37

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
New MapBasic Functions and Statements

CartesianConnectObjects() function
Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
CartesianConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there are
multiple instances where the minimum or maximum distance exists (for example, the two points
returned are not uniquely the shortest distance and there are other points representing "ties") then
these functions return one of the instances. There is no way to determine if the object returned is
uniquely the shortest distance.

CartesianClosestPoints() returns a Polyline object connecting object1 and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a cartesian calculation method. If the calculation
cannot be done using a cartesian distance method (for example, if the MapBasic Coordinate System is
Lat Long), then this function will produce an error.

CartesianObjectDistance() function
Purpose

Returns the distance between two objects.

Syntax
CartesianObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 21 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Description

CartesianObjectDistance() returns the minimum distance between object1 and object2 using a
cartesian calculation method with the return value in unit_name. If the calculation cannot be done
using a cartesian distance method (for example, if the MapBasic Coordinate System is Lat Long), then
this function will produce an error.

ConnectObjects() function
Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
ConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there are
multiple instances where the minimum or maximum distance exists (for example, the two points
returned are not uniquely the shortest distance and there are other points representing "ties") then
these functions return one of the instances. There is no way to determine if the object returned is
uniquely the shortest distance.

ConnectObjects() returns a Polyline object connecting object1 and object2 in the shortest (min ==
TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation cannot be
done using a spherical distance method (for example, if the MapBasic Coordinate System is
NonEarth), then a cartesian method will be used.

Farthest statement
Purpose

Find the object in a table that is farthest from a particular object. The result is a two-point Polyline
object representing the farthest distance.

Syntax
Farthest [N | ALL] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min_value] [Max max_value] Units unitname]
[Data clause]

N optional parameter representing the number of "farthest" objects to find. The default is 1. If All is
used, then a distance object is created for every combination.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 22 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
fromtable represents a table of objects that you want to find farthest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the farthest
distances from.

totable represents a table of objects that you want to find farthest distances to.

intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the intotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the intotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max sunclauses within it (for example, only a Min or only a Max,
or both may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.

Description

Every object in the fromtable is considered. For each object in the fromtable, the farthest object in the
totable is found. If N is present, then the N farthest objects in totable are found. A two-point Polyline
object representing the farthest points between the fromtable object and the chosen totable object is
placed in the intotable. If All is present, then an object is placed in the intotable representing the
distance between the fromtable object and each totable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second farthest object,
and 3 objects are requested, then the object will become the third farthest object.

The types of the objects in the fromtable and totable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 23 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
The Ignore clause can be used to limit the distances to be searched, and can effect how many
<totable> objects are found for each <fromtable> object. One use of the Min distance could be to
eliminate distances of zero. This may be useful in the case of two point tables to eliminate comparisons
of the same point. For example, if there are two point tables representing Cities, and we want to find
the closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the totable. This may be most useful in
conjunction with N or All. For example, we may want to search for the five airports that are closest to a
set of cities (where the fromtable is the set of cities and the totable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the All parameter, where we would
find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Farthest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min_value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Farthest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).

Data Clause
Data IntoColumn1=column1, IntoColumn2=column2

The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both totable and fromtable, then the column in totable will
be used (for example, totable is searched first for column names on the right hand side of the equals).
To avoid any conflicts such as this, the column names can be qualified using the table alias:

Data name1=states.state_name, name2=county.state_name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN…
functionality from the menu or by using the Update MapBasic statement.

See Also

Nearest statement, ObjectDistance() function, ConnectObjects() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 24 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Nearest statement
Purpose

Find the object in a table that is closest to a particular object. The result is a 2 point Polyline object
representing the closest distance.

Syntax
Nearest [N | ALL] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min_value] [Max max_value] Units unitname]
[Data clause]

N optional parameter representing the number of "nearest" objects to find. The default is 1. If All is
used, then a distance object is created for every combination.

fromtable represents a table of objects that you want to find closest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the closest
distances from.

totable represents a table of objects that you want to find closest distances to.

intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the intotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the intotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max subclauses within it (for example, only a Min or only a Max,
or both may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 25 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Description

Every object in the fromtable is considered. For each object in the fromtable, the nearest object in the
totable is found. If N is present, then the N nearest objects in totable are found. A two-point Polyline
object representing the closest points between the fromtable object and the chosen totable object is
placed in the intotable. If All is present, then an object is placed in the <intotable> representing the
distance between the fromtable object and each totable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second closest object,
and three objects are requested, then the object will become the third closest object.

The types of the objects in the fromtable and totable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many totable
objects are found for each fromtable object. One use of the Min distance could be to eliminate
distances of zero. This may be useful in the case of two point tables to eliminate comparisons of the
same point. For example, if there are two point tables representing Cities, and we want to find the
closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the <totable>. This may be most useful
in conjunction with N or All. For example, we may want to search for the five airports that are closest
to a set of cities (where the fromtable is the set of cities and the totable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the All parameter, where we
would find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Nearest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min_value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Nearest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 26 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Data Clause
Data IntoColumn1=column1, IntoColumn2=column2

The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both totable and fromtable, then the column in totable will
be used (for example, totable is searched first for column names on the right hand side of the equals).

To avoid any conflicts such as this, the column names can be qualified using the table alias:

Data name1=states.state_name, name2=county.state_name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN…
functionality from the menu or by using the Update MapBasic statement.

Examples

Assume that we have a point table representing locations of ATM machines and that there are at least
two columns in this table: business which represents the name of the business which contains the ATM
and Address which represents the street address of that business. Assume that the current selection
represents our current location. Then the following will find the closest ATM:

Nearest From selection To atm Into result Data where=buisness,address=address

If we wanted to find the closest five ATM machines to our current location:

Nearest 5 From selection To atm Into result Data where=business,address=address

If we want to find all ATM machines within a 5 mile radius:

Nearest All From selection To atm Into result Ignore Max 5 Units "mi" Data
where=buisness,address=address

Assume we have a table of house locations (the fromtable) and a table representing the coastline (the
totable). To find the distance from a given house to the coastline:

Nearest From customer To coastline Into result Data
who=customer.name,where=customer.address,coast_loc=coastline.county,type=coastli
ne.designation

If we don't care about customer locations which are greater than 30 miles from any coastline:

Nearest From customer To coastline Into result Ignore Max 30 Units "mi" Data
who=customer.name,where=customer.address,coast_loc=coastline.county,type=coastli
ne.designation

Assume we have a table of cities (the fromtable) and another table of state capitals (the totable), and
we want to find the closest state capital to each city, but we want to ignore the case where the city in
the fromtable is also a state capital:

Nearest From uscty_1k To usa_caps Into result Ignore Min 0 Units "mi" Data
city=uscty_1k.name,capital=usa_caps.capital

See Also

Farthest statement, ObjectDistance() function, ConnectObjects() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 27 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
ObjectDistance() function
Purpose

Returns the distance between two objects.

Syntax
ObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float

Description

ObjectDistance() returns the minimum distance between object1 and object2 using a spherical
calculation method with the return value in unit_name. If the calculation cannot be done using a
spherical distance method (for example, if the MapBasic Coordinate System is NonEarth), then a
cartesian distance method will be used.

ObjectNodeM() function
Purpose

Returns the m-value of a specific node in a region, polyline or multipoint object.

Syntax
ObjectNodeM(object, polygon_num, node_num)

object is an Object expression

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read

Return Value

Float

Description

The ObjectNodeM() function returns the m-value of a specific node from a region, polyline or multipoint
object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeM() function
supports Multipoint objects and returns the m-value of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which node should be
queried. You can use the ObjectInfo() function to determine the number of nodes in an object. If object
does not support m values or m-value for this node is not defined, then, error is set.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 28 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float

Open Table "routes"
Fetch First From routes

' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then

' ... then the object is a polyline...
z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM(routes.obj, 1, 1) ' read m-value

End If

See Also

Querying map objects

ObjectNodeZ() function
Purpose

Returns the z-coordinate of a specific node in a region, polyline, or multipoint object.

Syntax
ObjectNodeZ(object, polygon_num, node_num)

object is an Object expression

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read

Return Value

Float

Description

The ObjectNodeZ() function returns the z-value of a specific node from a region, polyline or multipoint
object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeZ() function
supports Multipoint objects and returns the z-coordinate of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the object's
nodes should be queried. You can use the ObjectInfo() function to determine the number of nodes in
an object.

If object does not support Z values or Z-value for this node is not defined then an error is thrown.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 29 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float

Open Table "routes"
Fetch First From routes

' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then

' ... then the object is a polyline...
z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM(routes.obj, 1, 1) ' read m-value

End If

See Also

Querying map objects

Server Create Workspace statement
Purpose

Creates a new workspace in the database (Oracle 9i or later).

Syntax
Server ConnectionNumber Create

Workspace WorkspaceName
[Description Description]
[Parent ParentWorkspaceName]

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive, and it must be
unique.The length of a workspace name must not exceed 30 characters.

Description is a string to describe the workspace.

ParentWorkspaceName is the name of the workspace which will be the parent of the new workspace
WorkspaceName. By default, when a workspace is created, it is created from the topmost, or LIVE,
database workspace.

Description

This statement only applies to Oracle9i or later. The new workspace WorkspaceName is a child of the
parent workspace ParentWorkspaceName or LIVE if the Parent is not specified.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 30 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Examples

The following example creates a workspace named GARYG in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create
Workspace "MIUSER"
Description "MIUser private workspace"

The following example creates a child workspace under MIUSER in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create Workspace "MBPROG" Description "MapBasic project" Parent
"MIUSER"

See also

Server Remove Workspace statement, Server Versioning statement

Server Remove Workspace statement
Purpose

Discards all row versions associated with a workspace and deletes the workspace in the database
(Oracle 9i or later).

Syntax
Server ConnectionNumber Remove

Workspace WorkspaceName

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive.

Description

This statement only applies to Oracle9i or later. This operation can only be performed on leaf
workspaces (the bottom-most workspaces in a branch in the hierarchy). There must be no other users
in the workspace being removed.

Examples

The following example removes the MIUSER workspace in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Remove Workspace "MIUSER"

See also

Server Create Workspace statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 31 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Server Versioning statement
Purpose

Version-enable or disable a table on Oracle 9i or later, which creates or deletes all the necessary
structures to support multiple versions of rows to take advantage of Oracle Workspace Manager.

Syntax
Server ConnectionNumber Versioning
{
ON

[History {SRV_WM_HIST_NONE|SRV_WM_HIST_OVERWRITE|SRV_WM_HIST_NO_OVERWRITE}]
| OFF

[Force {OFF | ON }]
}
Table ServerTableName

ON | OFF indicates to enable (when it is ON) a table versioning or disable (when it is OFF) a table
versioning.

ConnectionNumber is an integer value that identifies the specific connection.

ServerTableName is the name of the table on Oracle server to be version-enabled/disabled. The length
of a table name must not exceed 25 characters. The name is not case sensitive.

When version-enabling a table (ON), History is an optional parameter.

History clause specifies how to track modifications to ServerTableName, i.e., lets you timestamp
changes made to all rows in a version-enabled table and to save a copy of either all changes or only
the most recent changes to each row. Must be one of the following constant values:

• SRV_WM_HIST_NONE (0): No modifications to the table are tracked. (This is the default.)
• SRV_WM_HIST_OVERWRITE (1): The with overwrite (W_OVERWRITE) option. A view named

ServerTableName_HIST is created to contain history information, but it will show only the most
recent modifications to the same version of the table. A history of modifications to the version
is not maintained; that is, subsequent changes to a row in the same version overwrite earlier
changes. (The CREATETIME column of the TableName_HIST view contains only the time of
the most recent update.)

• SRV_WM_HIST_NO_OVERWRITE (2): The without overwrite (WO_OVERWRITE) option. A view
named ServerTableName_HIST is created to contain history information, and it will show all
modifications to the same version of the table. A history of modifications to the version is
maintained; that is, subsequent changes to a row in the same version do not overwrite earlier
changes. However, there are many restrictions on tables to use this option. Please refer the
Oracle9i Application Developer’s Guide - Workspace Manager for more information.

When disabling a version-enabled table (OFF), Force is an optional parameter.

If Force is set ON, all data in workspaces other than LIVE is to be discarded before versioning is
disabled. OFF (the default) prevents versioning from being disabled if ServerTableName was modified
in any workspace other than LIVE and if the workspace that modified ServerTableName still exists.

Description

This statement only applies to Oracle9i or later. The table, ServerTableName, that is being version-
enabled must have a primary key defined. Only the owner of a table or a user with the WM_ADMIN role
can enable or disable versioning on the table. Tables that are version-enabled and users that own
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 32 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
version-enabled tables cannot be deleted. You must first disable versioning on the relevant table or
tables. Tables owned by SYS cannot be version-enabled. Refer to the Oracle9i Application
Developer’s Guide - Workspace Manager for more information.

Examples

The following example enables versioning on the MIUUSA3 table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Versioning ON Table "MIUUSA3"

or

Server hdbc Versioning ON History 1 Table "MIUUSA3"

The following example disables versioning on the MIUUSA3 table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Versioning OFF Force ON Table "MIUUSA3"

See also

Server Create Workspace statement

Server Workspace Merge statement
Purpose

Applies changes to a table (all rows or as specified in the Where clause) in a workspace to its parent
workspace in the database (Oracle 9i or later).

Syntax
Server Workspace Merge

Table TableName
[Where WhereClause]
[RemoveData {OFF | ON }]
[{Interactive | Automatic merge_keyword}]

TableName is the name (alias) of an open MapInfo table from an Oracle9i or later server. The table
contains rows to be merged into its parent workspace.

WhereClause identifies the rows to be merged into the parent workspace. The clause itself should omit
the WHERE keyword.

Example:

’MI_PRINX = 20’. Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are merged.

If RemoveData is set ON, the data in the table (as specified by WhereClause) in the child workspace
will be removed. This option is permitted only if workspace has no child workspaces (that is, it is a leaf
workspace). OFF (the default) does not remove the data in the table in the child workspace.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 33 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
If there are conflicts between the workspace being merged and its parent workspace, the user must
resolve conflicts first in order for merging to succeed. MapInfo Professional allows the user to resolve
the conflicts first and then to perform the merging within the process. The following clauses let you
control what happens when there is a conflict. These clauses have no effect if there is no conflict
between the workspace being merged and its parent workspace.

Interactive
In the event of a conflict, MapInfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one or all together based on user choices. After all the conflicts are resolved, the table
is merged into its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict
In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase
In the event of a conflict, MapInfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged, the base rows are copied to the parent workspace
too.) Note that BASE is ignored for insert-insert conflicts where a base row does not exist; in this case
the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, MapInfo uses the parent workspace values.

Description

This statement only applies to Oracle9i or later. All data that satisfies the WhereClause in TableName
is applied to the parent workspace. Any locks that are held by rows being merged are released. If there
are conflicts between the workspace being merged and its parent workspace, this operation provides
user options on how to solve the conflict. The merge operation was executed only after all the conflicts
were resolved. A table cannot be merged in the LIVE workspace (because that workspace has no
parent workspace). A table cannot be merged or refreshed if there is an open database transaction
affecting the table.

Refer to Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples

The following example merge changes to USA where MI_PRINX=5 in MIUSER to its parent
workspace.

Server Workspace Merge
Table "GWMUSA2"
Where "MI_PRINX = 60"
Automatic UseCurrent

See Also

Server Workspace Refresh statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 34 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Server Workspace Refresh statement
Purpose

Applies all changes made to a table (all rows or as specified in the Where clause) in its parent
workspace to a workspace in the database (Oracle 9i or later).

Syntax
Server Workspace Refresh

Table TableName
[Where WhereClause]
[{Interactive | Automatic merge_keyword}]

TableName is the name (alias) of an open MapInfo table from an Oracle9i or later server. The table
contains rows to be refreshed using values from its parent workspace.

WhereClause identifies the rows to be refreshed from the parent workspace. The clause itself should
omit the WHERE keyword.

Example:

’MI_PRINX = 20’. Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are refreshed.

If there are conflicts between the workspace being refreshed and its parent workspace, the user must
resolve conflicts first in order for refreshing to succeed. MapInfo Professional allows the user to resolve
the conflicts first and then to perform the refreshing within the process. The following clauses let you
control what happens when there is a conflict. These clauses has no effect if there is no conflict
between the workspace being refreshed and its parent workspace.

Interactive
In the event of a conflict, MapInfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one based on user choices. After all the conflicts are resolved, the table is refreshed
from its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict
In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase
In the event of a conflict, MapInfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged to it parent, the base rows will be copied to the
parent workspace.) Note that BASE is ignored for insert-insert conflicts where a base row does not
exist; in this case the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, MapInfo uses the parent workspace values.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 35 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Description

This statement only applies to Oracle9i or later. It applies to workspace all changes in rows that satisfy
the WhereClause in the table in the parent workspace from the time the workspace was created or last
refreshed. If there are conflicts between the workspace being refreshed and its parent workspace, this
operation provides user options on how to solve the conflict. The refresh operation is executed only
after all the conflicts are resolved. A table cannot be refreshed in the LIVE workspace (because that
workspace has no parent workspace). A table cannot be merged or refreshed if there is an open
database transaction affecting the table.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples

The following example refreshes MIUSER by applying changes made to USA where MI_PRINX=5 in
its parent workspace.

Server Workspace Refresh
Table "GWMUSA2"
Where "MI_PRINX = 60"
Automatic UseParent

See also

Server Workspace Merge statement

SphericalConnectObjects() function
Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
SphericalConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there are
multiple instances where the minimum or maximum distance exists (for example, the two points
returned are not uniquely the shortest distance and there are other points representing "ties") then
these functions return one of the instances. There is no way to determine if the object returned is
uniquely the shortest distance.

SphericalConnectObjects() returns a Polyline object connecting object1 and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation
cannot be done using a spherical distance method (for example, if the MapBasic Coordinate System is
NonEarth), then this function will produce an error.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 36 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
SphericalObjectDistance() function
Purpose

Returns the distance between two objects.

Syntax
SphericalObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float

Description

SphericalObjectDistance() returns the minimum distance between object1 and object2 using a
spherical calculation method with the return value in unit_name. If the calculation cannot be done using
a spherical distance method (for example, if the MapBasic Coordinate System is NonEarth), then this
function will produce an error.

Enhanced MapBasic Functions and Statements

Add Cartographic Frame statement
[Window legend_window_id]
[Custom]
[Default Frame Title { def_frame_title } [Font...]]
[Default Frame Subtitle { def_frame_subtitle } [Font...]]
[Default Frame Style { def_frame_style } [Font...]]
[Default Frame Border Pen... pen_expr]
Frame From Layer { map_layer_id | map_layer_name
[Using

[Column { column | object [FromMapCatalog { On | Off }]}]

…

The syntax indicates that if you specify Using Column object, there is a new FromMapCatalog clause
you can use that is only applicable to live access tables.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table must
be a live access table that supports per record styles for this to occur. If the live table does not support
per record styles than the behavior is to revert to the default behavior for live tables, which is to get the
default styles from the MapCatalog (FromMapCatalog ON).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 37 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Examples

Creating on live access table that supports per record styles with map styles:

Create Cartographic Legend From Window 168811024
Scrollbars On
Portrait Style Size Large
Default Frame
Title "# Legend"
Font ("Arial",0,10,0)
Default Frame Style "%"
Font ("Arial",0,8,0)
Frame From Layer 1
Title "nyalbap Legend"
Using column object FromMapCatalog OFF label default

Creating on live access table with MapCatalog:

Create Cartographic Legend From Window 168811024
Scrollbars On
Portrait Style Size Large
Default Frame
Title "# Legend"
Font ("Arial",0,10,0)
Default Frame Style "%"
Font ("Arial",0,8,0)
Frame From Layer 1
Title "tony_nyalbap Legend"
Using column object FromMapCatalog ON label default

Creating on live access table with MapCatalog:

Create Cartographic Legend From Window 168811024
Scrollbars On
Portrait Style Size Large
Default Frame Title "# Legend"
Font ("Arial",0,10,0)
Default Frame Style "%"
Font ("Arial",0,8,0)
Frame From Layer 1 Title "nyalbap Legend"
Using column class label default

Workspace Behavior
When you save to a workspace, the new FromMapCatalog OFF clause is written to the workspace
when specified. This requires the workspace to bumped up to 800. If the FromMapCatalog ON clause is
specified we do not write it to the workspace since it is default behavior. This lets us avoid bumping up
the workspace version in this case.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 38 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Alter Object statement
Syntax

Alter Object obj
{ Info object_info_code, new_info_value |

Geography object_geo_code, new_geo_value |
Node { Add [Position polygon_num, node_num] (x, y) |

Set Position polygon_num, node_num (x, y) |
Remove Position polygon_num, node _num

}

polygon_num is an Integer value (one or larger), identifying one polygon from a region object or one
section from a polyline object.

Create Cartographic Legend statement
Syntax

Create Cartographic Legend
[From Window map_window_id]
[Behind]
[Position (x , y) [Units paper_units]]
[Width win_width [Units paper_units]]
[Height win_height [Units paper_units]]
[Window Title { legend_window_title }
[ScrollBars { On | Off }]
[Portrait | Landscape | Custom]
[Style Size {Small | Large}
[Default Frame Title { def_frame_title } [Font...] }]
[Default Frame Subtitle { def_frame_subtitle } [Font...] }]
[Default Frame Style { def_frame_style } [Font...] }]
[Default Frame Border Pen [[pen_expr]
Frame From Layer { map_layer_id | map_layer_name
[Using

[Column { column | object [FromMapCatalog { On | Off }]}]

…

The syntax indicates that if you specify Using Column object, there is a new FromMapCatalog clause
you can use that is only applicable to live access tables.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table must
be a live access table that supports per record styles for this to occur. If the live table does not support
per record styles than the behavior is to revert to the default behavior for live tables, which is to get the
default styles from the MapCatalog (FromMapCatalog ON).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 39 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Create Collection statement
Syntax

Create Collection [num_parts]
[Into { Window window_id | Variable var_name }]
Multipoint

[num_points]
(x1, y1) (x2, y2) [...]
[Symbol . . .]

Region
num_polygons
[num_points1 (x1, y1) (x2, y2) [...]]
[num_points2 (x1, y1) (x2, y2) [...] ...]
[Pen ...]
[Brush ...]
[Center (center_x, center_y)]

Pline
[Multiple num_sections]
num_points
(x1, y1) (x2, y2) [...]
[Pen ...]
[Smooth ...]

num_polygons is the number of polygons inside the Collection object.

num_sections specifies how many sections the multi-section polyline will contain.

Create Pline statement
Syntax

Create Pline
[Into { Window window_id | Variable var_name }]

[Multiple num_sections]
num_points

(x1, y1) (x2, y2) [...]
[Pen ...]
[Smooth]

num_sections specifies how many sections the multi-section polyline will contain.

Create Region statement
Syntax

Create Region
[Into { Window window_id | Variable var_name }]

num_polygons
[num_points1 (x1, y1) (x2 , y2) [...]]
[num_points2 (x1, y1) (x2 , y2) [...] ...]

[Pen ...]
[Brush ...]
[Center (center_x, center_y)]

num_polygons specifies the number of polygons that will make up the region (zero or more).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 40 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Commit Table statement
Here is the syntax with the new ConvertObjects keyword in bold:

Commit Table table
[As filespec

 [Type { NATIVE |
DBF [Charset char_set] |
Access Database database_filespec
Version version Table tablename

[Password pwd] [Charset char_set] |
QUERY

ODBC Connection ConnectionNumber Table tablename
}]

 [CoordSys...]
 [Version version]]

[{ Interactive | Automatic commit_keyword }]
[ConvertObjects {ON | OFF | INTERACTIVE }]

ExtractNodes() function
ExtractNodes(object, polygon_index, begin_node, end_node, b_region)

polygon_index is an Integer value, 1 or larger: for region objects. This indicates which polygon (for
regions) or section (for polylines) to query.

Import statement
Syntax

Import file_name
[Type "GML21"]
[Layer layer_name]
[Into table_name]
[Overwrite]
[Coordsys clause]

file_name is the name of the GML 2.1 file to import.

Type is "GML21" for GML 2.1 files.

layer_name is the name of the GML layer.

table_name is the MapInfo table name.

Overwrite causes the TAB file to be automatically overwritten. If Overwrite is not specified, an error
will result if the TAB file already exists.

The Coordsys clause is optional. If the GML file contains a supported projection and the Coordsys
clause is not specified, the projection from the GML file will be used. If the GML file contains a
supported projection and the Coordsys clause is specified, the projection from the Coordsys clause will
be used. If the GML file doesn’t contain a supported projection, the Coordsys clause must be specified.

Note: If the Coordsys clause does not match the projection of the GML file, your data may not import
correctly. The coordsys must match the coordsys of the data in the GML file. It will not
transform the data from one projection to another.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 41 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Example
Import "D:\midata\GML\GML2.1\mi_usa.xml" Type "GML21" layer "USA" Into
"D:\midata\GML\GML2.1\mi_usa_USA.TAB" Overwrite CoordSys Earth Projection 1, 104

The following functions have been updated for this release.

ObjectGeography() function

If object does not support z/m values or z/m-value for this node is not defined, then an error is thrown.

ObjectInfo() function
Syntax

ObjectInfo(object, attribute)

object is an Object expression

attribute is an integer code specifying which type of information should be returned.

Return value

OBJ_INFO_NPOLYGONS (21) is an Integer that indicates the number of polygons (in the case of a region)
or sections (in the case of a polyline) which make up an object.

OBJ_INFO_NPOLYGONS+N (21) is an Integer that indicates the number of nodes in the Nth polygon of a
region or the Nth section of a polyline.

Note: With region objects, MapInfo Professional counts the starting node twice (once as the start
node and once as the end node). For example, ObjectInfo returns a value of 4 for a triangle-
shaped region.

attribute setting Return value (Float)

OBJ_GEO_POINTZ z-value of a Point object.

OBJ_GEO_POINTM m-value of a Point object.

attribute setting Return value

OBJ_INFO_Z_UNIT_SET(12) Logical, indicating whether Z units are defined.

OBJ_INFO_Z_UNIT(13) String result: indicates distance units used for Z-values.
Return empty string if units are not specified.

OBJ_INFO_HAS_Z(14) Logical, indicating whether object has Z values.

OBJ_INFO_HAS_M(15) Logical, indicating whether object has M values.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 42 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
ObjectNodeX() function
Syntax

ObjectNodeX(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

ObjectNodeY() function
Syntax

ObjectNodeY(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

Register Table statement
Syntax

Register Table source_file
.
.
.

Type "ODBC" [Cache { On | OFF }]
Connection { Handle ConnectionNumber | ConnectionString }
Toolkit toolkitname
Table SQLQuery
[Versioned {Off | On}]
[Workspace WorkspaceName]
[ParentWorkspace ParentWorkspaceName]
...

Versioned indicates if the table to be opened is an version-enabled (ON) table or not (OFF).

WorkspaceName is the case-sensitive name of the current workspace in which the table is operated.

ParentWorkspaceName is the name of parent workspace of the current workspace.

Note: In order to use have this statement be effective, the table has to be version-enabled, i.e.,
Versioned is set ON.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 43 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Examples

The following example create a tab file and then open the tab file.

Register Table "Gwmusa" TYPE ODBC
 TABLE "Select * From ""MIUSER"".""GWMUSA"""
 CONNECTION "SRVR=troyny;UID=miuser;PWD=miuser"
 toolkit "ORAINET"
 Versioned On
 Workspace "MIUSER"
 ParentWorkspace "LIVE"
 Into "C:\projects\data\testscripts\english\remote\Gwmusa.tab"

Open Table "C:\Projects\Data\TestScripts\English\remote\Gwmusa.TAB" Interactive
Map From Gwmusa

See Also

Server Create Workspace statement

Set Cartographic Legend statement
Syntax

Set Cartographic Legend
[Window window_id]
[Refresh]

[Portrait | Landscape]
[Columns number_of_columns | Lines number_of_lines]

…

number_of-columns specifies the width of the legend.

number_of_lines specifies the height of the legend.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 44 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Set Legend statement
Purpose

The Set Legend command is used to provide custom ordering of legend categories or items. The new
syntax is in bold.

Syntax
Set Legend

[Window window_id]
[Layer { layer_id | layer_name | Prev }

[Display { On | Off }]
[Shades { On | Off }]
[Symbols { On | Off }]
[Lines { On | Off }]
[Count { On | Off }]
[Title { Auto | layer_title [Font . . .] }]
[SubTitle { Auto | layer_subtitle [Font . . .] }]
[Style Size {Large | Small | Fontsize}]
[Columns number_of_columns]
[Ascending { On | Off } | Order { Ascending | Descending | Custom }]
[Ranges { [Font . . .]

[Range { range_identifier | default }]
 range_title [Display { On | Off }] }
[, . . .]

]
]
[, . . .]

There are four new clauses: Order, Range, Style Size, and Columns. When you want custom order,
include Order Custom in the MapBasic statement as well as a range identifier for each category in the
theme. The order of ranges dictates the order of categories in the legend. The range identifier is the
same const string or value used by the Values clause in the Shade statement that creates the
Individual Value theme.

The Order and Range clauses will increase the workspace version to 8.0. Old workspaces will still
parse correctly as there is still support for the original Ascending clause. If the order is not custom,
Mapinfo Professional will write out the original Ascending clause and NOT increase the workspace
version.

The Order clause is a new way to specify legend label order of ascending or descending as well as
new custom order. However, the original Ascending { On | Off } clause is still available for backwards
compatibility. You can use either the new Order clause, or the old Ascending clause, but not both (both
clauses cannot be included in the same MapBasic statement or you will get a syntax error).

The Custom option for the Order clause is allowed only for Individual Value themes. An error will occur
if you try to custom order other theme types. The error is “Custom legend label order is only
allowed for Individual Value themes.”

When the Order is Custom, each range in the Ranges clause must include a range identifier, otherwise
a syntax error will occur. The range identifier must come before the range title and Display clause. The
range identifier is the same const string or value used by the Values clause in the Shade statement that
creates the Individual Value theme. The range identifier for the "all others" category is 'default'.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 45 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Every category in the theme must be included, including the default or "all others" category, otherwise
an error will occur. The error is "Incorrect number of ranges specified for custom order."

The default or "all others" category may also be reordered, although the best place to place this
argument is at the end or beginning of the Ranges clause.

If the range identifier does not refer to a valid category an error will occur. The error is "Invalid range
value for custom order."

The Style Size clause facilitates thematic swatches to appear in different sizes.

The Columns clause allows you to specify the width of the legend. number_of-columns indicates the
column width.

Examples

The example workspace below needs the following shade statement:

shade 1 with Province_Name values
"Alberta" Brush (2,16711680,16777215) Pen (1,2,0) ,
"British Columbia" Brush (2,65280,16777215) Pen (1,2,0) ,
"Manitoba" Brush (2,255,16777215) Pen (1,2,0) ,
"New Brunswick" Brush (2,16711935,16777215) Pen (1,2,0) ,
"Newfoundland" Brush (2,16776960,16777215) Pen (1,2,0) ,
"Northwest Territories" Brush (2,65535,16777215) Pen (1,2,0) ,
"Nova Scotia" Brush (2,8388608,16777215) Pen (1,2,0) ,
"Nunavut" Brush (2,32768,16777215) Pen (1,2,0) ,
"Ontario" Brush (2,128,16777215) Pen (1,2,0) ,
"Prince Edward Island" Brush (2,8388736,16777215) Pen (1,2,0) ,
"Quebec" Brush (2,8421376,16777215) Pen (1,2,0) ,
"Saskatchewan" Brush (2,32896,16777215) Pen (1,2,0) ,
"Yukon Territory" Brush (2,16744576,16777215) Pen (1,2,0)
default Brush (1,0,16777215) Pen (1,2,0) # color 1 #
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 46 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
The Set Legend statement includes the Order Custom tokens and a Range identifier for each category.
The Range identifier is the same string found in the shade statement and the order of ranges is what is
displayed in the Legend. (New information is in bold.)

set legend
layer 1

display on
shades on
symbols off
lines off
count on
title auto Font ("Arial",0,9,0)
subtitle auto Font ("Arial",0,8,0)
order custom
ranges Font ("Arial",0,8,0)

range "Prince Edward Island" auto display on ,
range "Northwest Territories" auto display on ,
range "British Columbia" auto display on ,
range "Yukon Territory" auto display on ,
range "New Brunswick" auto display on ,
range "Newfoundland" auto display on ,
range "Saskatchewan" auto display on ,
range "Nova Scotia" auto display on ,
range "Manitoba" auto display on ,
range "Nunavut" auto display on ,
range "Ontario" auto display on ,
range "Quebec" auto display on ,
range "Alberta" auto display on ,
range default auto display off

Enabling Transparent Patterns on Same Layer
In order to facilitate a multi-thematic analysis on a particular layer, transparent patterns are necessary.
To facilitate this, the Shade statement and the Set Shade statement now have the addition of a Style
Replace clause for use with for Range and Individual Value themes. The syntax for the new clause is
as follows:

{Style Replace { On | Off } }

Style Replace On (default) specifies the layers under the theme are not drawn.

Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

Export Windows to Additional Formats
The Save Window statement now supports three additional formats for image export. The new values
for type include: "TIFFG4", "TIFFLZW", and "GIF".
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 47 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions
Examples
save window frontwindow() as "untitled.gif" type "gif"
save window frontwindow() as "untitled.tif" type "tiffg4"
save window frontwindow() as "untitled.tif" type "tifflzw"

TableInfo() function

attribute code TableInfo() returns

TAB_INFO_SUPPORT_MZ Logical result: TRUE if table supports M and Z values.

TAB_INFO_Z_UNIT_SET Logical result: TRUE is unit is set for Z-values.

TAB_INFO_Z_UNIT String result: indicates distance units used for Z-values.
Return empty string if units are not specified.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 48 MB_UG.pdf

3
A Quick Look at MapBasic
MapBasic is a software package that lets you customize and automate
the MapInfo desktop-mapping software.

Sections in this Chapter:

Getting Started . 50
What Are the Key Features of MapBasic? 51
How Do I Learn MapBasic? . 52
The MapBasic Window in MapInfo . 54

User Guide Chapter 3: A Quick Look at MapBasic
Getting Started

The MapBasic software provides you with a development environment. Using this development
environment, you can write programs in the MapBasic programming language.

The MapBasic development environment includes:

• A text editor you can use to type your programs. If you already have a text editor you would
rather use, you can use that editor instead of the MapBasic text editor. For details, see Using
the Development Environment on page 56.

• The MapBasic compiler. After you have written a program, compile it to produce an
“executable” application (i.e., an application that can be run by MapInfo).

• The MapBasic linker. If you are creating a large, complex application, you can divide your
program into separate modules, then “link” those modules together into one application.

• MapBasic online help, providing reference information for each statement and function in the
MapBasic language.

• From looking at the name, you might expect the MapBasic programming language to be
reminiscent of traditional BASIC languages. In fact, MapBasic programs do not look much like
traditional BASIC programs. MapBasic does, however, bear a resemblance to newer versions
of BASIC which have been developed in recent years (for example, Microsoft’s Visual Basic
language). Newer BASICs, such as Visual Basic and MapBasic, resemble Pascal more than
traditional BASIC.

Every MapBasic program works in conjunction with MapInfo. First, you use the MapBasic development
environment to create and compile your program; then you run MapInfo when you want to run your
program. Thus, a MapBasic program is not a stand-alone program; it can only run when MapInfo is
running. You could say that a MapBasic program runs on top of MapInfo.

However, MapBasic is not merely a macro language, MapBasic is a full-featured programming
language, with over 300 statements and functions. Furthermore, since MapBasic programs run on top
of MapInfo, MapBasic is able to take advantage of all of MapInfo’s geographic data-management
capabilities.

A Traditional BASIC Code Sample A MapBasic Code Sample

20 GOSUB 3000 Call Check_Status(quit_time)

30 IF DONE = 1 THEN GOTO 90 Do While Not quit_time

40 FOR X = 1 TO 10 For x = 1 To 10

50 GOSUB 4000 Call Process_batch(x)

60 NEXT X Next

80 GOTO 30 Loop
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 50 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic
How Do I Create and Run a MapBasic Application?
Chapter 4: Using the Development Environment provides detailed instructions on creating a
MapBasic application.

If you’re in a hurry to get started, you can create your first program by following these steps:

1. Run the MapBasic development environment.
2. Choose FILE > NEW to open an edit window.
3. Type a MapBasic program into the edit window. If you do not have a program in mind, you can

enter the following one-line MapBasic program:
4. Note “Welcome to MapBasic!”
5. Choose FILE > SAVE to save the program to a file. Enter a file name such as welcome.mb.

Note: Do not close the Edit window.

6. Choose PROJECT > COMPILE CURRENT FILE. MapBasic compiles your program (welcome.mb),
and then creates a corresponding executable application file (welcome.mbx).

7. Run MapInfo.
8. Choose TOOLS > RUN MAPBASIC PROGRAM. MapInfo prompts you to choose the program you

want to run. If you select welcome.mbx, MapInfo runs your program, which displays the
message, “Welcome to MapBasic!” in a dialog box.

Those are the main steps involved in creating, compiling, and running a MapBasic application. In
practice, of course, the process is more complex. For example, the procedure outlined above does not
describe what happens if you encounter a compilation error. For more details on creating and
compiling MapBasic programs, see Chapter 4: Using the Development Environment.

What Are the Key Features of MapBasic?

MapBasic Lets You Customize MapInfo
Through MapBasic, you can customize the MapInfo user-interface. A MapBasic application can modify
or replace the standard MapInfo menus, add entirely new menus to the MapInfo menu bar, and present
the user with dialogs custom-tailored to the task at hand.

Thus, MapBasic lets you create turn-key systems, custom-tailored systems that help the user perform
tasks quickly and easily, with minimal training.

MapBasic Lets You Automate MapInfo
MapBasic applications are often used to spare end-users the tedium of doing time-consuming manual
work. For example, a MapInfo user may need to develop a graticule (a grid of horizontal and vertical
longitude and latitude lines) in the course of producing a map. Drawing a graticule by hand is tedious,
because every line in the graticule must be drawn at a precise latitude or longitude. However, a
MapBasic application can make it very easy to produce a graticule with little or no manual effort.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 51 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic
MapBasic Provides Powerful Database-Access Tools
You can perform complex, sophisticated database queries with a single MapBasic statement. For
example, by issuing a MapBasic Select statement (which is modeled after the Select statement in the
SQL query language), you can query a database, apply a filter to screen out any unwanted records,
sort and sub-total the query results. All of this can be accomplished with a single MapBasic statement.

Using powerful MapBasic statements like Select and Update, you can accomplish in a few lines of
code what might take dozens or even hundreds of lines of code using another programming language.

MapBasic Lets You Connect MapInfo To Other Applications
You are not limited to the statements and functions that are built into the MapBasic programming
language. Because MapBasic provides open architecture, your programs can call routines in external
libraries. If you need functionality that isn’t built into the standard MapBasic command set, MapBasic’s
open architecture lets you get the job done.

MapBasic programs can use Dynamic Data Exchange (DDE) to communicate with other software
packages, including Visual Basic applications. MapBasic programs also can call routines in Windows
Dynamic Link Library (DLL) files. You can obtain DLL files from commercial sources, or you can write
your own DLL files using programming languages such as C or Pascal. MapBasic provides Integrated
Mapping, that lets you integrate MapInfo functionality into applications written using other development
environments, such as Visual Basic. For details see Chapter 12: Integrated Mapping.

How Do I Learn MapBasic?

If you have not already done so, you should learn how to use MapInfo before you begin working with
MapBasic. This manual assumes that you are familiar with MapInfo concepts and terminology, such as
tables, Map windows, and workspaces.

Once you are comfortable using MapInfo, you can use the following printed and online instructional
materials to help you learn about MapBasic.

MapBasic User Guide
This book explains the concepts behind MapBasic programming. Read the User Guide when you are
learning how to program in MapBasic.

Each chapter in the User Guide discusses a different area of programming. For example, Chapter 7:
Creating the User Interface explains how to create a user interface (custom menus and dialog
boxes), while Chapter 9: File Input/Output tells you how to perform file input/output. Every MapBasic
programmer should read Chapter 5: MapBasic Fundamentals.

MapBasic Reference
This A-to-Z reference contains detailed information about every statement and function in the
MapBasic language. Use the Reference when you need a complete description of a particular
statement or function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 52 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic
Sample Programs
Many programmers find that the best way to learn a programming language is to study sample
programs. Accordingly, MapBasic comes with a library of sample programs. See the Samples folder
installed on your MapBasic CD for sample programs included with MapBasic.

Note: The MapBasic User Guide frequently refers to the TextBox sample program (textbox.mb). You
may want to become familiar with this program before you learn MapBasic. See Appendix B for
a listing of the TextBox program.

MapInfo Workspace Files
MapInfo can save session information (for example, the list of what tables and windows are open) in a
workspace file. If you use a text editor to examine a workspace file, you will see that the workspace
contains MapBasic statements. You can copy MapBasic statements out of a workspace file, and paste
the statements into your program. In a sense, any MapInfo workspace is a sample MapBasic program.

For example, suppose you want to write a MapBasic program that creates an elaborate page layout.
You could create the page layout interactively, using MapInfo, and save the layout in a MapInfo
workspace file. The workspace file would contain a set of MapBasic statements relating to page
layouts. You then could copy the layout-related statements from the workspace file, and paste the
statements into your MapBasic program.

Online Help
The MapBasic development environment provides extensive online Help. Much of the online Help is
reference information, providing descriptions of every statement and function in the language. The
Help file also provides instructions on using the MapBasic development environment.

Tip: as you are typing in your program, if you select a statement or function name and press F1, the
Help window shows you help for that statement or function.

The Help system contains many brief sample programs which you can copy from the Help window and
paste into your program. You can copy text out of the Help window by clicking and dragging within the
Help window.

If you are viewing a Help screen and you click on a MapBasic menu or a MapBasic edit window, the
Help window disappears. This is standard behavior for Windows Help. The Help window has not been
closed, it is simply in the background. Note that you can return to the Help window by pressing ALT-
TAB. You can also prevent the Help window from disappearing by checking the Help window’s HELP >
ALWAYS on Top menu item.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 53 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic
The MapBasic Window in MapInfo

The MapInfo software provides a feature known as the MapBasic window. This window can help you
learn the syntax of statements in the MapBasic language.

To open the MapBasic window:

1. Run MapInfo
2. Choose Options > Show MapBasic Window.

The MapBasic window appears on the screen. Thereafter, as you use MapInfo’s menus and dialogs,
the MapBasic window displays corresponding MapBasic statements.

For example, if you perform a query by using MapInfo’s Select dialog, the MapBasic window
automatically shows you how you could perform the same operation through statements in the
MapBasic language.

You can also enter statements directly into the MapBasic window, although not all MapBasic
statements may be executed in this manner. To determine if a statement may be issued through the
MapBasic window, consult the MapBasic Reference. Statements that are not supported through the
MapBasic window are identified by a notice that appears under the Restrictions heading. As a general
rule, you cannot enter flow-control statements (for example, For...Next loops) through the MapBasic
window.

The MapBasic window is also a debugging tool. For details, see Chapter 6: Debugging and Trapping
Runtime Errors.

Training and On-Site Consulting
MapInfo Corporation offers MapBasic training classes. If you want to become proficient in MapBasic as
quickly as possible, you may want to attend MapBasic training. To ensure an ideal training
environment, class size is limited to eight to ten people. For information on scheduled classes, call
MapInfo Professional Services.

If you require extensive assistance in developing your MapBasic application, you may be interested in
MapInfo’s Consulting Services. You can arrange to have MapBasic systems engineers work on-site
with you. For additional information, call MapInfo Professional Services.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 54 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 55 MB_UG.pdf

4
Using the Development
Environment
The MapBasic software includes a text editor you can use to type your
program. Conventional menu items (for example, Undo, Copy, Paste)
make it easy to edit your program. Other menu items let you compile
(and, optionally, link) your program(s) into executable form. Online help
for the MapBasic language is available as well.

The MapBasic text editor, MapBasic compiler, and MapBasic online help
are collectively known as the development environment.

Sections in this Chapter:

Introduction to MapBasic Development Environment 57
Editing Your Program. 57
Compiling Your Program . 60
Linking Multiple Modules Into a Single Project 62
Menu Summary in MapBasic Development Environment . 66

User Guide Chapter 4: Using the Development Environment
Introduction to MapBasic Development Environment

The MapBasic development environment contains a built-in text editor that you can use to create and
edit MapBasic programs. Pull-down menus — File, Edit, Search, Project, Window, and Help —
provide you with everything you need to create and edit programs, compile them, and handle any
syntax errors detected by the MapBasic compiler.

If you are familiar with other text editors, you will find MapBasic’s text editor easy to use. Most of the
MapBasic menus are predictable: the File menu contains Open, Close, Print, and Save commands,
while the Edit menu contains Undo, Cut, Copy, and Paste commands. However, MapBasic also
contains elements not found in conventional text editors (for example, a compiler and a linker).

Editing Your Program

If you have not already done so, run MapBasic. Then, from the File menu, either choose Open (to
display an existing program) or New (to open a blank edit window).

Type your program into the edit window. If you don’t yet have a program to type in, you can use the
following one-line sample MapBasic program:

Note ”Welcome to MapBasic!”

Once you have typed in your program, you can save your program to disk by choosing Save from the
File menu. Give your program a name such as welcome.mb.

MapBasic automatically appends the file extension .mb to program files. Thus, if you name your
program welcome, the actual file name is welcome.mb.

Since MapBasic saves your program in a conventional text file, you can use other text editing software
to edit your program if you wish.

Keyboard Shortcuts
The following table lists the keyboard shortcuts you can use within the MapBasic edit window.

Keyboard Action Effect of Action

Home / End Insertion point moves to beginning/end of line

Ctrl-Home/ Ctrl-End Insertion point moves to beginning/end of document

Ctrl-TAB/ Ctrl-Shift-
TAB

Insertion point moves backward/forward one word

Ctrl-T Displays the Go To Line dialog box

Ctrl-O Displays the Open dialog box

Ctrl-N Opens a new, empty edit window
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 57 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
Tip: If you select a function name before pressing F1, Help shows a topic describing that function.

Ctrl-S Saves the active edit window

Ctrl-P Prints the active edit window

Ctrl-A Selects all text in the edit window

Ctrl-C Copies selected text to the clipboard

Ctrl-X Cuts selected text and copies it to the clipboard

Ctrl-V Pastes text from the clipboard into the edit window

Ctrl-Del Deletes the word after the insertion point

Del Deletes selected text; does not copy to clipboard

Ctrl-F Displays the Find And Replace dialog box

Ctrl-G Repeats the most recent Find command

Ctrl-R Replaces the selected text (using the replacement text from the Find
And Replace dialog box), and performs another Find

Ctrl-J Displays Select Project File dialog

Ctrl-K Compiles the program in the active window

Ctrl-E Next Error command; scrolls the edit window to show the line that
caused a compilation error

Ctrl-L Links the active project

Ctrl-U Sends message to MapInfo Professional to run the active program

F1 Displays Help.

F8 Displays Text Style dialog, allowing you to change the font

Ctrl-F4 Closes the active edit window

Alt-F4 Exits the MapBasic development environment

Shift-F4 Tile windows

Shift-F5 Cascade windows

Keyboard Action Effect of Action
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 58 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
Mouse Shortcuts

Tip: The MapBasic online help contains code samples. You can drag & drop code samples from the
help window to your edit window.

1. Display help.
2. Click and drag within the help window to highlight the text you want to copy.
3. Click on the text you highlighted. Without releasing the mouse button, drag the text out of the

help window.
4. Move the mouse pointer over your edit window, and release the mouse button. The text is

dropped into your program.

Limitations of the MapBasic Text Editor
Each MapBasic edit window can hold a limited amount of text. If the MapBasic text editor beeps when
you try to insert text, the beeping indicates that the edit window is full.

There are three ways to work around this size limitation:

• If you have another text editor, you can use that editor to edit your program. To compile your
program, switch to MapBasic and choose the Compile From File menu command.

• You can break your program file (.mb file) into two or more smaller files, and then use the
MapBasic Include statement to incorporate the various files into a single application. For more
information about the Include statement, see the MapBasic Reference.

• You can break your program file (.mb file) into two or more smaller files, and then create a
MapBasic project file which links the various program files into a single application. In some
ways, this is similar to using the Include statement to combine program modules. Project files,
however, provide a more efficient solution. Each file included in a project can be compiled
separately; this means that when you edit only one of your modules, you only need to
recompile that module.

Mouse Action Effect of Action

Double-click Double-clicking on text within your program selects a word.
Double-clicking in the list of error messages scrolls the window to
show the line of your program that caused the error.

Triple-click Highlights entire line of text (32-bit version only).

Drag & Drop Dragging text to another window copies the text.
Dragging text within the same window moves the text (unless you
hold down the Ctrl key during the drag, in which case the text is
copied).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 59 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
Compiling Your Program

If you haven’t already done so, display your program in a MapBasic edit window. Then, to compile your
program, choose Compile Current File from the Project menu.

Note: You can have multiple edit windows open at one time. When you choose Compile Current
File, MapBasic compiles the program that is in the front-most window. Thus, if you have
multiple edit windows open, you must make the appropriate window active before you compile.

The MapBasic compiler checks the syntax of your program. If your program contains any syntax errors,
MapBasic displays a dialog indicating that errors were found, and then displays descriptions of the
errors in a list beneath the edit window.

Each error message begins with a line number, indicating which line in the program caused the error.
You must correct your program’s errors before MapBasic can successfully compile your program.

Figure: First.mb

If you double-click on an error message that appears beneath the edit window, MapBasic scrolls the
window to show you the line of the program that caused the error.

After you correct any errors in your program, choose Compile Current File again to try to recompile.
Once your program compiles successfully, MapBasic displays a dialog indicating that compilation was
complete.

When compilation is successful, MapBasic creates an .mbx file (MapBasic eXecutable). This .mbx file
must be present when the user actually runs the finished application. Thus, if you want to provide your
users with a finished MapBasic application, but you do not want to give them all of your source code,
give the users your .mbx file but not your .mb file.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 60 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
A Note on Compilation Errors
There are some types of spelling errors which the MapBasic compiler cannot detect. For example, the
MapBasic compiler will compile the following program, even though the program contains a
typographical error on the second line (STATES is misspelled as TATES):

Open Table ”states”
Map From tates

The MapBasic compiler cannot identify the typographical error on the second line. This is not a defect
of the compiler, rather, it is simply a result of the fact that some variable and table references are not
evaluated until runtime (until the moment the user runs the program). When the user runs the
preceding program, MapInfo Professional attempts to carry out the Map From tates statement. At that
time, MapInfo Professional displays an error message (for example, “Table tates is not open”) unless a
table called tates is actually available.

Running a Compiled Application
To run the compiled application, choose Run MapBasic Program from MapInfo Professional’s File
menu. MapInfo Professional’s Run MapBasic Program dialog prompts you to choose which MapBasic
application file (.mbx file) to run.

The MapBasic development environment also provides a shortcut to running your program: After
compiling your program, choose Run from MapBasic’s Project menu (or press Ctrl-U). MapBasic sends
a message to MapInfo Professional, telling MapInfo Professional to execute the application.

The MapBasic development environment also provides a shortcut to running your program: after
compiling your program, you can choose Run from MapBasic’s Project menu. MapBasic sends a
message to MapInfo Professional, telling it to execute the application.

Note: MapInfo Professional must already be running.

Using Another Editor to Write MapBasic Programs
If you already have a favorite text editor, you can use that editor for editing your MapBasic program.
Just save your MapBasic program as a standard text file.

You can also use word processing software to edit your programs. However, if you use a word
processor to edit your programs, you may need to take special steps to make sure that the word
processor saves your work in a plain text file format. Saving a document as plain text often involves
choosing Save As instead of Save. For more details on saving a document in a plain text format, see
the documentation for your word processing software.

Compiling Programs Written In Another Editor
Earlier, we discussed how MapBasic’s Compile Current File menu item compiles whichever program is
on the screen in the active edit window. MapBasic also provides an alternate method for compiling your
program: the Compile From File command on MapBasic’s File menu.

If you use a text editor other than MapBasic to edit your program, you probably will want to use
Compile From File to compile your program. Compile From File compiles a program without displaying
the program in a MapBasic edit window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 61 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
When you choose Compile From File, MapBasic prompts you to choose a file to compile. If the chosen
file has any compilation errors, MapBasic writes the error messages to a text file with the .err
extension. For example, if you choose Compile From File to compile the program dispatch.mb,
MapBasic writes any error messages to the text file dispatch.err. To view the error file, choose File >
Open.

Compiling and Linking Programs From the Command Line
If you use a text editor other than MapBasic to edit your programs, you may find it awkward switching
to MapBasic whenever you want to compile or link your application. However, there is a way to
automate the process of compiling and linking: if you can configure your text editor so that it issues a
command string, then you can compile programs without leaving your editor.

You can start the MapBasic development environment by executing the command:

mapbasic

If the command line also includes the parameter -D followed by one or more program names,
MapBasic automatically compiles the program files. For example, the following command line launches
MapBasic and compiles two program files (main and sub1):

mapbasic -D main.mb sub1.mb

If the command line includes the parameter -L followed by one or more project file names, MapBasic
links the projects. (Linking and Project files are discussed in the next section.) For example, the
following command line links the TextBox application:

mapbasic -L tbproj.mbp

The command line can include both the -D and the -L parameters, as shown below:

mapbasic -D textbox.mb -L tbproj.mbp

If you launch MapBasic with a command line that includes the -D parameter or the -L parameter,
MapBasic shuts down after compiling or linking the appropriate files.

To start MapBasic without displaying a splash screen use the -Nosplash parameter:

mapbasic -Nosplash

Linking Multiple Modules Into a Single Project

What is a MapBasic Project File?
A project file is a text file that allows MapBasic to link separate program files into one application. If you
are developing a large, complex application, your program could eventually contain thousands of lines
of code. You could type the entire program into a single program file. However, most programmers
dislike managing program files that large; once a program file grows to over a thousand lines, it can be
difficult to locate a particular part of the program. Therefore, many programmers break up large
applications into two or more smaller files. The practice of breaking large programs down into smaller,
more manageable pieces is known as modular programming.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 62 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
If you do divide your program into two or more modules, you need to create a project file. The project
file tells the MapBasic linker how to combine separate modules into a single, executable application.

Project files are an optional part of MapBasic programming. You can create, compile, and run
applications without ever using a project file. However, if you plan to develop a large-scale MapBasic
application, it is worth your while to take advantage of MapBasic’s project-file capabilities.

What Are The Benefits of Using Project Files?
• Project files let you modularize your programming. Once you set up a project file, you can

divide your program into numerous, small files. Modular programs are generally easier to
maintain in the long run. Also, having modular programs makes it unlikely that your program
will grow too large to be edited in a MapBasic edit window.

• Project files let you modularize your programming. Once you set up a project file, you can
divide your program into numerous, small files. Modular programs are generally easier to
maintain in the long run.

• Project files make it easy to have two or more programmers working on a project at the same
time. Once you have set up a project file, each programmer can work on a separate module,
and the modules can be joined (or, more specifically, “linked”) by the project file.

• Project files can reduce the time it takes to recompile your application. If you change one
module in a multiple-module project, you can recompile just that module, then relink the
project. This is often much faster than recompiling all source code in the project-which is what
you must do if you do not use project files.

Examples of Project Files
The TextBox application uses a project file (tbproj.mbp) that looks like this:

[Link]
Application=textbox.mbx
Module=textbox.mbo
Module=auto_lib.mbo

Similarly, the ScaleBar application uses a project file (sbproj.mbp) that looks like this:

[Link]
Application=scalebar.mbx
Module=scalebar.mbo
Module=auto_lib.mbo

In both examples, the final line of the project file tells MapBasic to build the auto_lib module into the
project. The auto_lib module is one of the sample programs included with the MapBasic software.

If a MapBasic program includes the auto_lib module, the program can provide a special “Auto-Load...”
button in its About dialog box. By choosing the Auto-Load button, the user can set up the application so
that it loads automatically, every time the user runs MapInfo Professional. If the user does not turn on
the Auto-Load feature, the MapBasic application stops running as soon as the user exits MapInfo
Professional.

To build the Auto-Load feature into your MapBasic program, see the instructions listed in the file
auto_lib.mb.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 63 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
Creating a Project File
If you have already written a program file, and you want to create a project file for your program, follow
these steps:

1. Choose File > New to open a new edit window.
2. Enter the following line in the edit window:

[Link]

3. Enter a line that contains the text Application=appfilename (where appfilename specifies the
file name of the executable file you want to create). For example:
Application=C:\MB\CODE\CUSTOM.MBX
Application=Local:MapBasic:custom.mbx
Application=/MapBasic/mb_code/custom.mbx

4. Enter a line that contains the text Module=modulename (where modulename specifies the
name of a MapBasic object file). For example:
Module=C:\MB\CODE\CUSTOM.MBO
Module=Local:MapBasic:custom.mbo
Module=/MapBasic/mb_code/custom.mbo

Note the extension on the filename; MapBasic object files have the file extension .mbo.
MapBasic creates an object file when you compile a single module that is part of a multiple-
module project.

Whenever you choose Project > Compile Current File, MapBasic tries to compile the current
file into an executable application file (ending with .mbx). However, if the program file contains
calls to functions or procedures that are not in the file, MapBasic cannot create an .mbx file. In
this case, MapBasic assumes that the program is part of a larger project. MapBasic then builds
an object file (.mbo) instead of an executable file (.mbx). MapBasic also creates an object file
whenever the module that you are compiling does not have a Main procedure.

5. Repeat step 4 for every file you wish to include in your application.
6. Choose File > Save As to save the project file.

In the Save As dialog, choose the file type “Project File” (from the list of file types in the lower
left corner of the dialog), so that the file has the extension .mbp (MapBasic Project).

In the Save As dialog, choose the file type “Project File” (from the list of file types in the lower
left corner of the dialog), so that the file has the extension .mbp (MapBasic Project).

7. Close the edit window (either choose File > Close or click on the window’s close box).

If you add more modules to the project at a later date, remember to add appropriate “Module=” lines to
the project file.

Compiling and Linking a Project
Once you have created a project file, you can compile and link your project by following these steps:

1. Compile each module that is used in the project. To compile a module, choose File > Open,
then choose Project > Compile Current File. To compile a module without first displaying it,
choose File > Compile From File.

2. Choose Project > Select Project File to tell MapBasic which project file you want to link. The
Select Project File dialog displays. Choose the project (.mbp) file you want, and choose OK.
The selected project file appears in an edit window. This file remains selected until you exit
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 64 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
MapBasic, close the project file’s edit window, or choose the Project > Select Project File
command again. Only one project file can be selected at any time.

Note: You cannot change which project file is selected by making an edit window the front-most
window. You cannot change which project file is selected by choosing File > Open. To select
the project file you want to link, choose Project > Select Project File.

3. Choose Project > Link Current Project to link your application. MapBasic reads the object
(.mbo) files listed in the project file. If there are no link errors, MapBasic builds an executable
(.mbx) file. If there are link errors, MapBasic displays an error message.

You also can link a project in a single step, without first displaying the project file in an edit window, by
choosing File > Link From File.

The object files created by the MapBasic compiler cannot be linked using any other linker, such as a C-
language linker. Only the MapBasic linker can link MapBasic object modules.

Opening Multiple Files
If you use project files, you may find that you sometimes need to open all of the program files in your
project. To simplify this process, the Open dialog lets you open multiple files at the same time. To open
multiple files at one time:

1. On the File menu, choose Open.
2. Click on a file name in the Open Program dialog box.
3. Hold down the Shift key or the Ctrl key as you click on another file name. Holding down the

Shift key lets you select a list of adjacent files. Holding down the Ctrl key lets you add files to
the selected set, one file at a time.

Calling Functions or Procedures From Other Modules
If a .MB file is part of a multiple-module project, it can call functions and sub procedures located in
other modules. For example, textbox.mb calls the HandleInstallation procedure, which is located in the
auto_lib library. Calling a function or sub procedure located in another module is known as an external
reference.

If your MapBasic program calls an external procedure, your program file must contain a Declare Sub
statement. Similarly, if your program calls an external function, your program file must contain a
Declare Function statement. These Declare statements tell the MapBasic compiler what parameters
are used by the procedure or function.

The sample program textbox.mb contains the statement Include “auto_lib.def”. The auto_lib.def
definitions file contains a set of Declare Sub and Declare Function statements which correspond to
the auto_lib module. If textbox.mb did not include the auto_lib.def definitions file, the MapBasic
compiler would consider the call to the HandleInstallation procedure to be a syntax error (“Invalid sub
procedure name”).

Sharing Variables With Other Modules
To declare a global variable that can be used by two or more modules in a project:

1. Place Global statements in a definitions file (for example, “globals.def”).
2. Use the Include statement to incorporate the definitions file into each module that needs to

use the global variables.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 65 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
For example, the auto_lib.def definitions file declares two global string variables, gsAppFilename and
gsAppDescription. The auto_lib.mb program file and the textbox.mb program file both issue the
statement:

Include ”auto_lib.def”

Therefore, the two modules can share the global variables. When the textbox.mb program stores
values in the global variables, the auto_lib.mb library is able to read the new values.

Global variables also allow you to share information with other applications that are running.

Declaring Variables That Cannot Be Shared With Other Modules
A program file can contain Dim statements that are located outside of any function or sub procedure
definition. Such Dim statements are known as module-level Dim statements. If a variable is declared
by a module-level Dim statement, all functions and procedures in that module (i.e., in that .mb file) can
use that variable. However, a MapBasic file cannot reference another file’s module-level Dims.

Use module-level Dim statements if you want to declare a variable that can be shared by all
procedures in a file, but you want to be sure that you don’t accidentally use a variable name that is
already in use in another module.

Menu Summary in MapBasic Development Environment

The File Menu
The File menu provides commands that let you create, open, close, save, exit, and print MapBasic
programs.

• New opens a new edit window where you can type in your program.
• Open displays an existing file in an edit window. The file can be a MapBasic program file (for

example, dispatch.mb), a list of error messages (dispatch.err), or a MapInfo Professional
workspace file. Each workspace is actually just a text file containing an assortment of
MapBasic statements.
The Open dialog lets you open two or more files at the same time. To select multiple files, hold down
the Shift key or the Ctrl key as you click on the file names.

Note: Some text files are too big to be displayed in a MapBasic edit window. For information on
bypassing this limitation, see Limitations of the MapBasic Text Editor (above).

• Close closes the active edit window. If you have made changes in the current window,
MapBasic prompts you to either save or discard the changes before closing the window. Close
is available when at least one edit window is open.

• Close All closes all open edit windows. As with the Close command, MapBasic prompts you to
either save or discard any unsaved changes. Close All is available when at least one edit
window is open.

• Save saves the contents of the active edit window to disk. Save is available when you have
changed the contents of an edit window.

• Save As saves the contents of the active edit window under a new file name.
Save As is available when you have an open edit window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 66 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
• Revert discards any changes made to the edit window since it was last saved.
Revert is available when you have changed the contents of an edit window.

• Compile From File compiles an existing .mb file directly from the contents of the disk file,
without first displaying the contents of the file in an edit window. (As opposed to the Compile
Current File command on the Project menu, which compiles whatever program is in the active
edit window.) Use Compile From File to compile a program written in another text editor.
If there are compilation errors, Compile From File writes error messages to a text file named
filename.err. To view the errors file, choose File > Open.

• Link From File links an existing project without first displaying the contents of the project file in
an edit window. (As opposed to the Link Current Project command on the Project menu, which
links the current project.)

• Page Setup defines printer options (for example, print margins).
• Page Setup defines printer options (for example, paper size and orientation).
• Printer Setup defines printer options (for example, which print command to use).
• Print prints the active edit window.

Print is available when there is at least one Edit window open.

• Exit exits the MapBasic environment. MapBasic prompts you to either save or discard any
changes that have not been saved.

• Quit exits the MapBasic environment. MapBasic prompts you to either save or discard any
changes that have not been saved.

The Edit Menu
The Edit menu provides commands that you can use when drafting and editing your MapBasic
program.

• Undo cancels the most recent change you made in the active edit window. When you select
Undo, MapBasic discards the last change you performed, and then the menu item changes to
read Redo. If you select Redo, MapBasic then re-applies the discarded change.
Undo is enabled when there is at least one open edit window, and you have made changes to
the text in that window.

• Cut copies the selected (highlighted) text to the Clipboard, then removes the selected text
from the edit window. The text remains on the Clipboard and you can later insert it elsewhere
through the Paste command (see below).
Cut is available when text is selected in the active edit window.
Copy copies the selected text to the Clipboard, but does not delete it.
Copy is available when text is selected in the active edit window.

Paste copies the contents of the Clipboard to the active edit window at the current cursor
location. If you select text in the edit window, and then perform Paste, the text from the
clipboard replaces the selected text.

Paste is available when text is in the Clipboard and there is at least one open edit window.

• Clear deletes selected text without copying it to the Clipboard.
Clear is available when there is selected text in an open edit window.

Select All selects the entire contents of the active edit window. Select All is available when
there is at least one open edit window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 67 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
The Search Menu
The Search menu helps you to locate and replace text in the edit window. Some of these commands
simplify the process of locating statements that have syntax errors.

• Find searches the active edit window for a particular text string. Find is available when there is
at least one open edit window.

To find the next occurrence of a text string: Type the text string you want to find into the Find box. If you
want the search to be case-sensitive, check the Match Case check box.

When you click on the Find button, MapBasic searches forward from the current insertion point. If
MapBasic finds an occurrence of the Find string, the window scrolls to show that occurrence. If the text
is not found, MapBasic beeps.

To replace all occurrences of a text string:

• Type the replacement string in the Replace With box, and click the Replace All button.
MapBasic replaces all occurrences of the Find string with the Replace With string.

Note: This replacement happens instantly, with no confirmation prompt.

To confirm each string replacement:

1. Choose Search > Find. The Find dialog appears.
2. Fill in the Find and Replace With text boxes.
3. Within the Find dialog, click the Find button.

MapBasic finds and highlights the next occurrence of the text string.

If you want to replace the currently-highlighted string, press Ctrl-R (the hot-key for the Replace And
Find Again menu command).

If you do not want to replace the currently-highlighted occurrence of the Find string, press Ctrl-G (the
hot-key for the Find Again menu command).

If you want to replace the currently-highlighted string, press Command-R (which is the hot-key for the
Replace and Find Again command).

If you do not want to replace the currently-highlighted occurrence of the Find string, press Command-
G, the hot-key for the Find Again menu item.

If you want to replace the currently-highlighted string, press Ctrl-R (which is the hot-key for the Replace
and Find Again command).

If you do not want to replace the currently-highlighted occurrence of the Find string, press Ctrl-G, the
hot-key for the Find Again menu item.

• Find Again finds the next occurrence of the string specified in the previous Find dialog.
Find Again is available when there is at least one open edit window, and a Find operation has
been performed.

• Replace And Find Again replaces the selected text with text specified in the Find dialog, then
finds and highlights the next occurrence of the search string
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 68 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
Next Error is a feature of the compiler that helps you correct syntax errors. When a program
does not compile correctly, MapBasic displays a list of the errors at the bottom of the edit
window. Next Error scrolls forward through the edit window, to the line in your program which
corresponds to the next error in the error list.

Next Error is available when there are error messages in the active edit window.

Previous Error is similar to Next Error. Previous Error scrolls backward through the edit
window to the previous item in the error list. Previous Error is available when there are error
messages relating to the active edit window.

Go To Line prompts you to type in a line number, then scrolls through the edit window to that
line in your program.
A program may compile successfully, yet it may encounter an error at runtime. When this
happens, a dialog appears, indicating that an error occurred at a certain line in your program.
Typically, you then want to return to the MapBasic development environment and go to the
appropriate line of your program. Go To Line is available when there is at least one edit window
open.

The Project Menu
The Project menu lets you compile and run MapBasic programs, display program statistics, and show
or hide the error window.

• Select Project File presents a dialog which lets you open an existing project file. A project file
is a text file that lists all the modules that comprise your application. Once you select a project
file, that project file becomes the active project file, and you can compile the file by choosing
Link Current Project.
Compile Current File compiles the program in the active edit window. Compile is available if there is
at least one open edit window.

If the compiler detects syntax errors in the program, MapBasic displays a list of errors at the bottom of
the edit window. If there are no syntax errors, MapBasic builds an mbx file (if the module is a stand-
alone program) or an object module (mbo) file.

• Link Current Project links the modules listed in the current project file, and produces an
executable application file (unless there are errors, in which case an error message displays).
Link Current Project is available whenever a project file is open.

• Run sends a message to the MapInfo Professional software, telling it to execute the
application in the front-most edit window.

• Get Info displays statistics about the program in the active edit window. Get Info is available if
there is at least one open edit window.

• Show/Hide Error List activates or deactivates the error list associated with the active edit
window. If the error list is currently displayed, the menu item reads Hide Error List. If the error
list is currently hidden, the menu item reads Show Error List. Show/Hide Error List is available
when there is an open edit window with associated error messages.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 69 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment
The Window Menu
If you have more than one edit window open, MapBasic’s Window menu lets you arrange your
windows or switch which window is active.

Commands on this menu are available when there is at least one edit window open.

• Tile Windows arranges the edit windows in a side-by-side pattern.
• Cascade Windows arranges the edit windows in an overlapping pattern.
• Arrange Icons organizes the icons that correspond to your minimized edit windows. You can

click an edit window’s minimize button to temporarily shrink that window down to an icon.
• Text Style lets you choose the font in which the window is displayed. The font you choose is

applied to the entire window.
• The bottom of the Window menu lists a menu item for each open edit window. To make one of

the edit windows active (i.e., to bring that window to the front), select the appropriate item from
the Window menu.

The Help Menu
Use the Help menu to access online help. The online help file contains descriptions of all statements
and functions in the MapBasic language. Help also includes a comprehensive set of cross-reference
screens to help you find the name of the statement you need.

• Contents opens the help window at the Contents screen. From there, you can navigate
through help by clicking on hypertext jumps, or you can click on the Search button to display
the Search dialog.

• Search For Help On jumps directly to the Search dialog.
• How To Use Help displays a help screen that explains how to use online help.
• About MapBasic displays the About dialog, which shows you copyright and version number

information.

Note: Many of the help screens contain brief sample programs. You can copy those program
fragments onto the clipboard, then paste them into your program. To copy text from a help
screen, choose Edit > Copy from the help window’s Edit menu or by dragging text directly out
of the help window, and drop it into your program.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 70 MB_UG.pdf

5
MapBasic Fundamentals
Every MapBasic programmer should read this chapter, which describes
many fundamental aspects of the MapBasic programming syntax.

Sections in this Chapter:

General Notes on MapBasic Syntax 72
Expressions . 78
Looping, Branching, and Other Flow-Control 87
Procedures . 92
Procedures That Act As System Event Handlers 95
Tips for Handler Procedures . 98
Compiler Instructions . 100
Program Organization . 102

User Guide Chapter 5: MapBasic Fundamentals
General Notes on MapBasic Syntax

Before getting into discussions of specific MapBasic statements, it is appropriate to make some
observations about MapBasic program syntax in general.

Comments
In MapBasic, as in some other BASIC languages, the apostrophe character (’) signifies the beginning
of a comment. When an apostrophe appears in a program, MapBasic treats the remainder of the line
as a comment, unless the apostrophe appears within a quoted string constant.

Case-Sensitivity
The MapBasic compiler is case-insensitive. You can enter programs with UPPER-CASE, lower-case,
or Mixed-Case capitalization.

For clarity, this manual capitalizes the first letter of each MapBasic language keyword. Program
variables appear in lower-case. For example, in the following program sample, the words If and Then
have proper capitalization because they are keywords in MapBasic, whereas the word counter
appears in lower-case, because it is the name of a variable.

If counter > 5 Then
 Note ”Count is too high”
End If

Continuing a Statement Across Multiple Lines
When you write a MapBasic program, you can continue longer statements across more than one line.
For example, the following code sample continues the If...Then statement across several lines:

If counter = 55
 Or counter = 34 Then
 Note ”Counter is invalid”
End If

Codes Defined In mapbasic.def
Many MapBasic statements and function calls will not work properly unless the following statement
appears at or near the top of your program:

Include ”mapbasic.def”

The file mapbasic.def is a text file containing definitions for many standard MapBasic codes. As a rule,
the codes defined in mapbasic.def are all in upper-case (for example, TRUE, FALSE, BLACK, WHITE,
CMD_INFO_X, OBJ_INFO_TYPE, etc.). As you read the program examples that appear in the
MapBasic documentation, you will see many such codes. For example:

If CommandInfo(CMD_INFO_DLG_OK) Then
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 72 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
If your program references standard codes (such as CMD_INFO_DLG_OK in the example above),
your program must issue an Include statement to include mapbasic.def. If you omit the Include
statement, your program will generate a runtime error (for example, “Variable or Field
CMD_INFO_DLG_OK not defined”).

Typing Statements Into the MapBasic Window
The MapInfo Professional software has a feature known as the MapBasic Window. Typing statements
directly into the MapBasic Window helps you to learn MapBasic statement syntax. However, some
restrictions apply to the MapBasic window:

• Some MapBasic statements may not be entered through the MapBasic window, although you
may use those statements within compiled MapBasic programs. The general rule is: flow-
control statements (such as If...Then, For...Next, and GoTo) do not work in the MapBasic
window.

• To determine whether you can type a particular statement into the MapBasic window, see the
MapBasic Reference or online Help. If a statement does not work in the MapBasic window,
that statement’s entry in the Reference indicates the restriction.

• When you type statements directly into MapInfo Professional’s MapBasic Window, you must
take special steps if you want to continue the statement across multiple lines. At the end of the
each partial line, type Ctrl-Enter instead of Enter. After you have typed the entire statement,
highlight the lines that make up the statement, and press Enter.

• Codes that are defined in mapbasic.def (for example, BLACK, WHITE, etc.) may not be
entered in the MapBasic window. However, each code has a specific value, which you can
determine by reading mapbasic.def; for example, the code BLACK has a numerical value of
zero. When you are entering commands into the MapBasic window, you must use the actual
value of each code, instead of using the name of the code (for example, use zero instead of
“BLACK”).

• Each statement that you type into the MapBasic window is limited to 256 characters.

Variables
MapBasic’s syntax for declaring and assigning values to variables is much like the syntax of other
modern BASIC languages. However, MapBasic supports some types of variables that are not available
in other languages (such as the Object variable; for a complete list of MapBasic variable types, see the
description of the Dim statement in the MapBasic Reference).

What Is a Variable?
Think of a variable as a very small piece of your computer’s memory. As you write programs, you will
find that you need to temporarily store various types of information in memory. To do this, you declare
one or more variables. Each variable has a unique name (for example, counter, x, y2,
customer_name). For each variable that you declare, MapBasic sets aside a small piece of memory.
Thereafter, each variable can contain one small piece of information.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 73 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Declaring Variables and Assigning Values to Variables
The Dim statement defines variables. You must declare every variable that you use, and the variable
declaration must appear before the variable is used.

Use the equal operator (=) to assign a value to a variable.

The following example declares an Integer variable and assigns a value of 23 to that variable:

Dim counter As Integer
counter = 23

A single Dim statement can declare multiple variables, provided that the variable names are separated
by commas. The following Dim statement declares three floating-point numeric variables:

Dim total_distance, longitude, latitude As Float
longitude = -73.55
latitude = 42.917

A single Dim statement can declare variables of different types. The following statement declares two
Date variables and two String variables:

Dim start_date, end_date As Date,
 first_name, last_name As String

Variable Names
Variable names must conform to the following rules:

• Each variable name can be up to thirty-one characters long.
• Variable names may not contain spaces.
• Each variable name must begin with a letter, an underscore (_) or a tilde (~).
• Each variable name can consist of letters, numbers, pound signs (#), or underscore characters

(_).
• A variable name may end in one of the following characters: $, %, &, !, or @. In some BASIC

languages, these characters dictate variable types. In MapBasic, however, these characters
have no special significance.

• You may not use a MapBasic keyword as a variable name. Thus, you may not declare
variables with names such as If, Then, Select, Open, Close, or Count. For a list of reserved
keywords, see the discussion of the Dim statement in the MapBasic Reference.

Data Types
MapBasic supports the following types of variables:

Type Description

SmallInt Integer value between -32767 and 32767; stored in two bytes

Integer Integer value between -2 billion and 2 billion; stored in four bytes

Float Floating-point value; stored in eight-byte IEEE format

String Variable-length character string, up to 32,767 characters long

String * n Fixed-length character string, n characters long (up to 32,767 characters)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 74 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Fixed-length and variable-length String variables
MapBasic supports both fixed-length and variable-length String variables. A variable-length String
variable can store any string value, up to 32,767 characters long. A fixed-length String variable,
however, has a specific length limit, which you specify in the Dim statement.

To declare a variable-length String variable, use String as the variable type. To declare a fixed-length
String variable, follow the String keyword with an asterisk (*), followed by the length of the string in
bytes. In the following example, full_name is declared as a variable-length String variable, while
employee_id is declared as a fixed-length String variable, nine characters long:

Dim full_name As String,
employee_id As String * 9

Note: Like other BASIC languages, MapBasic automatically pads every fixed-length String variable
with blanks, so that the variable always fills the allotted space. Thus, if you declare a fixed-
length String variable with a size of five characters, and then you assign the string “ABC” to the
variable, the variable will actually contain the string “ABC” (“ABC” followed by two spaces).
This feature is helpful if you need to write an application that produces formatted output.

Array Variables
To declare an array variable, follow the variable name with the size of the array enclosed in
parentheses. The array size must be a positive integer constant expression. The following Dim
statement declares an array of ten Date variables:

Dim start_date(10) As Date

To refer to an individual element of an array, use the syntax:

array_name(element-number)

Thus, the following statement assigns a value to the first element of the start_date array:

start_date(1) = ”6/11/93”

To resize an array, use the ReDim statement. Thus, in cases where you do not know in advance how
much data your program will need to manage-perhaps because you do not know how much data the
user will enter-your program can use the ReDim statement to enlarge the array as needed. Use the
UBound() function to determine the current size of an array.

Logical True or False

Date Date

Object Graphical object, such as a line or a circle; see Chapter 10: Graphical Objects for
details

Alias Column reference of a table; see Chapter 8: Working With Tables for details

Pen Pen (line) style setting; see Chapter 10: Graphical Objects

Brush Brush (fill) style setting; see Chapter 10: Graphical Objects

Type Description
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 75 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
The following example declares an array of String variables called name_list. The latter part of the
program increases the size of the array by ten elements.

Dim counter As Integer, name_list(5) As String
...
counter = UBound(names) ’ Determine current array size
ReDim names(counter + 10) ’ Increase array size by 10

MapBasic arrays are subject to the following rules:

• MapBasic supports only one-dimensional arrays.
• In MapBasic, the first element in an array always has an index of one. In other words, in the

example above, the first element of the names array is names(1).

If you need to store more data than will fit in an array, you may want to store your data in a table. For
more information on using tables, see Chapter 8: Working With Tables.

MapBasic initializes the contents of numeric arrays and variables to zero when they are defined. The
contents of string arrays and variables are initially set to the null string.

Custom Data Types (Data Structures)
Use the Type...End Type statement to define a custom data type. A custom data type is a grouping of
one or more variables types. Once you define a custom data type, you can declare variables of that
type by using the Dim statement.

The following program defines a custom data type, employee, then declares variables of the employee
type.

Type employee
name As String
title As String
id As Integer

End Type
Dim manager, staff(10) As employee

 Each component of a custom data type is referred to as an element. Thus, the employee data type in
the preceding example has three elements: name, title, and id. To refer to an individual element of an
array, use the generic syntax:

variable_name.element_name

The following statement assigns values to each element of the manager variable:

manager.name = ”Joe”
manager.title = ”Director of Publications”
manager.id = 111223333

You can declare an array of variables of a custom type. The following statement assigns values to
some of the elements of the first item in the employee array:

staff(1).name = ”Ed”
staff(1).title = ”Programmer”

Type...End Type statements must appear outside of any sub procedure definition. Sub procedures are
discussed later in this chapter. Typically, Type...End Type statements appear at or near the very top of
your program. A Type definition may include elements of any other type, including previously-defined
custom data types. You can also declare global variables and arrays of custom data types.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 76 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Global Variables
Variables declared with the Dim statement are local variables. A local variable may only be used within
the procedure where it is defined. MapBasic also lets you declare global variables, which may be
referenced within any procedure, anywhere in the program.

To declare a global variable, use the Global statement. The syntax for the Global statement is identical
to the syntax for the Dim statement, except that the keyword Global appears instead of the keyword
Dim. Thus, the following Global statement declares a pair of global Integer variables:

Global first_row, last_row As Integer

Global statements must appear outside of any sub procedure definition. Sub procedures are
discussed later in this chapter. Typically, Global statements appear at or near the top of the program.

The following program declares several global variables, then references those global variables within
a sub procedure.

Declare Sub Main
Declare Sub initialize_globals
Global gx, gy As Float ’ Declare global Float variables
Global start_date As Date ’ Declare global Date variable
Sub Main
 Dim x, y, z As Float ’ Declare Main proc’s local vars
 Call initialize_globals
 ...
End Sub
Sub initialize_globals
 gx = -1 ’ Assign global var: GX
 gy = -1 ’ Assign global var: GY
 start_date = CurDate() ’ Assign global var: START_DATE
End Sub

Whenever possible, you should try to use local variables instead of global variables, because each
global variable occupies memory for the entire time that your program is running. A local variable,
however, only occupies memory while MapBasic is executing the sub procedure where the local
variable is defined.

MapBasic global variables can be used to exchange data with other software packages. When an
application runs on Windows, other applications can use Dynamic Data Exchange to read and modify
the values of MapBasic global variables.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 77 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Scope of Variables
A sub procedure may declare a local variable which has the same name as a global variable. Thus,
even if a program has a global variable called counter, a sub procedure in that program may also have
a local variable called counter:

Declare Sub Main
Declare Sub setup
Global counter As Integer
...
Sub setup
 Dim counter As Integer
 counter = 0
 ...
End Sub

If a local variable has the same name as a global variable, then the sub procedure will not be able to
read or modify the global variable. Within the sub procedure, any references to the variable will affect
only the local variable. Thus, in the example above, the statement: counter = 0 has no effect on the
global counter variable.

Upon encountering a reference to a variable name, MapBasic attempts to interpret the reference as the
name of a local variable. If there is no local variable by that name, MapBasic attempts to interpret the
reference as the name of a global variable. If there is no global variable by that name, MapBasic tries
to interpret the reference as a reference to an open table. Finally, if, at runtime, the reference cannot be
interpreted as a table reference, MapBasic generates an error message.

Expressions

In this section, we take a closer look at expressions. An expression is a grouping of one or more
variables, constant values, function calls, table references, and operators.

What is a Constant?
An expression can be very simple. For example, the following statement:

counter = 23

assigns a simple integer expression namely, the value 23 to the variable, counter. We refer to the
expression 23 as a numeric constant. You might think of a constant as a specific value you can assign
to a variable.

The following program declares a String variable, then assigns a string constant (the name “Brian
Nichols”) to the variable:

Dim name As String
name = ”Brian Nichols”

The syntax for numeric expressions is different than the syntax for string expressions: string constants
must be enclosed in double-quotation marks (for example, “Brian Nichols”) whereas numeric constants
(for example, 23) are not. You cannot assign a String expression, such as “Brian Nichols,” to a numeric
variable. For more information on constant expressions, see A Closer Look at Constants.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 78 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
What is an Operator?
An operator is a special character (for example, +, *, >) or a word (for example, And, Or, Not) which
acts upon one or more constants, variables, or other values. An expression can consist of two or more
values that are combined through an operator. In the following example, the plus operator (+) is used
within the expression y + z, to perform addition. The result of the addition (the sum) is then assigned to
the variable, x:

Dim x, y, z As Float
y = 1.5
z = 2.7
x = y + z

In this example, the plus sign (+) acts as an operator - specifically, a numeric operator. Other numeric
operators include the minus operator (-), which performs subtraction; the asterisk (*), which performs
multiplication; and the caret (^), which performs exponentiation. A complete list of numeric operators
appears later in this chapter.

The plus operator can also be used within a String expression to concatenate separate strings into one
string. The following program builds a three-part string expression and stores the string in the variable,
full_name:

Dim first_name, last_name, middle_init, full_name As String
first_name = ”Brian ”
middle_init = ”R. ”
last_name = ”Nichols”
full_name = first_name + middle_init + last_name

’ At this point, the variable full_name contains:
’ Brian R. Nichols

What is a Function Call?
The MapBasic language supports many different function calls. Each function has a different purpose.
For example, the Sqr() function calculates square root values, while the UCase$() function converts a
text string to uppercase. When you enter a function name into your program, your program calls the
named function, and the function returns a value.

A function call can comprise all or part of an expression. For example, the following statement assigns
a value to the variable, x, based on the value returned by the Minimum() function:

x = Minimum(y, z)

The MapBasic function call syntax is similar to that of other modern BASIC languages. The function
name (for example, “Minimum”, in the example above) is followed by a pair of parentheses. If the
function takes any parameters, the parameters appear inside the parentheses. If the function takes
more than one parameter, the parameters are separated by commas (the Minimum() function takes
two parameters).

A function call is different than a generic statement, in that the function call returns a value. A function
call cannot act as a stand-alone statement; instead, the value returned by the function must be
incorporated into some larger statement. Thus, the following program consists of two statements: a
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 79 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Dim statement declares a variable, x; and then an assignment statement assigns a value to the
variable. The assignment statement incorporates a function call (calling the Sqr() function to
calculate the square root of a number):

Dim x As Float
x = Sqr(2)

Similarly, the following program uses the CurDate() function, which returns a Date value representing
the current date:

Dim today, yesterday As Date
today = CurDate()
yesterday = today - 1

The CurDate() function takes no parameters. When you call a function in MapBasic, you must follow
the function name with a pair of parentheses, as in the example above, even if the function takes no
parameters.

MapBasic supports many standard BASIC functions, such as Chr$() and Sqr(), as well as a variety of
special geographic functions such as Area() and Perimeter().

A Closer Look At Constants
A constant is a specific value that does not change during program execution. Programmers
sometimes refer to constants as “hard-coded” expressions, or as “literals.”

Numeric Constants: Different types of numeric variables require different types of constants. For
instance, the constant value 36 is a generic numeric constant. You can assign the value 36 to any
numeric variable, regardless of whether the variable is Integer, SmallInt, or Float. The value 86.4 is a
floating-point numeric constant.

Hexadecimal Numeric Constants: MapBasic 4.0 and later supports hexadecimal numeric constants
using the Visual Basic syntax: &Hnumber (where number is a hexadecimal number). The following
example assigns the hexadecimal value 1A (which equals decimal 26) to a variable:

Dim i_num As Integer
i_num = &H1A

Numeric constants may not include commas (thousand separators). Thus, the following statement will
not compile correctly:

counter = 1,250,000 ’ This won’t work!

If a numeric constant includes a decimal point (decimal separator), the separator character must be a
period, even if the user’s computer is set up to use some other character as the decimal separator.

String Constants: A String constant is enclosed in double quotation marks. For example:

last_name = ”Nichols”

Each string constant can be up to 256 characters long.

The double quotation marks are not actually part of the string constant, they merely indicate the
starting and ending points of the string constant. If you need to incorporate a double-quotation mark
character within a string constant, insert two consecutive double-quotation marks into the string. The
following program illustrates how to embed quotation marks within a string:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 80 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Note ”The table ””World”” is already open.”

Logical Constants: Logical constants can be either one (1) for TRUE or zero (0) for FALSE. Many
MapBasic programs refer to the values TRUE and FALSE; note that TRUE and FALSE are actually
defined within the standard MapBasic definitions file, mapbasic.def. To refer to standard definitions like
TRUE and FALSE, a program must issue an Include statement, to include mapbasic.def. For example:

Include ”mapbasic.def”
Dim edits_pending As Logical
edits_pending = FALSE

Date Constants: To specify a date constant, enter an eight-digit Integer with the format YYYYMMDD.
This example specifies the date December 31, 1995:

Dim d_enddate As Date
d_enddate = 19951231

Alternately, you can specify a string expression that acts as a date constant:

d_enddate = ”12/31/1995”

When you specify a string as a date constant, the year component can be four digits or two digits:

d_enddate = ”12/31/95”

You can omit the year, in which case the current year is used:

d_enddate = ”12/31”

Caution: Using a string as a date constant is sometimes unreliable, because the results you get
depend on how the user’s computer is configured. If the user’s computer is configured to use Month/
Day/Year formatting, then “06/11/95” represents June 11, but if the computer is set up to use Day/
Month/Year formatting, then “06/11/95” represents the 6th of November.

If the user’s computer is set up to use “-” as the separator, MapInfo Professional cannot convert string
expressions such as “12/31” into dates.

To guarantee predictable results, use the NumberToDate() function, which accepts the eight-digit
numeric date syntax. (Numeric date constants, such as 19951231, are not affected by how the user’s
computer is configured.) If you need to use strings as date values - perhaps because you are reading
date values from a text file - use the Set Format statement to control how the strings are interpreted.
For Set Format statement details, see the MapBasic Reference or online Help.

To configure date formatting options under Microsoft Windows, use the Regional Settings control
panel. Alias Constants: Alias variables are discussed in detail in Chapter 8: Working With Tables.
You can assign a string expression to a variable of type Alias. For example:

Dim column_name As Alias
column_name = ”City”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 81 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
The following table contains examples of various types of constants.

Types Sample assignments Notes

Integer i = 1234567

SmallInt m = 90

Float f = 4
size = 3.31
debt = 3.4e9

String s_mesg = “Brian Nichols” Enclose string in double
quotes. To embed quotes in
a string, type two quotation
marks. To include special
characters use the Chr$()
function.

Logical edits_pending = 1
edits_pending = TRUE

1= true, 0 = false
The MapBasic definition file
defines TRUE and FALSE.

Date d_starting = 19940105
date_done = “3/23/88”
paiddate = “12-24-1993”
yesterday = CurDate() - 1

Alias col_name = “Pop_1990”
col_name = “COL1”

Aliases can be assigned like
strings. See Chapter 8:
Working With Tables for
more information about
Alias variables.

Pen hwypen = MakePen(1, 3,
BLACK)

There is no constant syntax
for Pen expressions.

Brush zbrush = MakeBrush(5,
BLUE, WHITE)

There is no Brush constant
syntax.

Font lbl_font =
 MakeFont(“Helv”, 1, 20,
BLACK, WHITE)

There is no Font constant
syntax.

Symbol loc_sym = MakeSymbol(44,
RED, 16)

There is no Symbol constant
syntax.

Object path = CreateLine(73.2, 40,
73.6, 40.4)

There is no Object constant
syntax.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 82 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Variable Type Conversion
MapBasic provides functions for converting data of one type to another type. For instance, given a
number, you can produce a string representing the number calling the function Str$():

Dim q1, q2, q3, q4, total As Float, s_message As String
...
total = q1 + q2 + q3 + q4
s_message = ”Grand total: ” + Str$(total)

A Closer Look At Operators
Operators act on one or more values to produce a result. Operators can be classified by the data types
they use and the types of results they produce.

Numeric Operators: Each of the operators in the following table is a numeric operator. Two numeric
values can be combined using a numeric operator to produce a numeric result.

The \ and Mod operators perform integer division. For example:

The minus sign (-) operator can be used to negate a numeric value

x = -23

String Operators: The plus operator (+) lets you concatenate two or more string expressions into one
long string expression.

Note ”Employee name: ” + first_name + ” ” + last_name

You can use the ampersand operator (&) instead of the plus operator when concatenating strings. The
& operator forces both operands to be strings, and then concatenates the strings. This is different than
the + operator, which can work with numbers or dates without forcing conversion to strings.

Operator Performs Example

+ addition x = a + b

- subtraction x = a - b

* multiplication x = a * b

/ division x = a / b

\ integer division x = a \ b

Mod integer remainder x = a Mod b

^ exponentiation x = a ^ b

10 / 8 returns 1.25

10 \ 8 returns 1 (the integer portion of 1.25)

10 Mod 8 returns 2 (the remainder after dividing 10 by 8)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 83 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Note: The & character is also used to specify hexadecimal numbers (&Hnumber). When you use &
for string concatenation, make sure you put a space before and after the & so that the
MapBasic compiler does not mistake the & for a hex number prefix.

The Like operator performs string comparisons involving wild-card matching. The following example
tests whether the contents of a String variable begins with the string “North”:

If s_state_name Like ”North%” Then ...

The Like operator is similar to the Like() function. For a description of the Like() function, see the
MapBasic Reference or online Help.

Date Operators: The plus and minus operators may both be used in date expressions, as summarized
below.

The following example uses the CurDate() function to determine the current date, and then calculates
other date expressions representing tomorrow’s date and the date one week ago:

Dim today, one_week_ago, tomorrow As Date,
 days_elapsed As Integer
today = CurDate()
tomorrow = today + 1
one_week_ago = today - 7
’ calculate days elapsed since January 1:
days_elapsed = today - StringToDate(”1/1”)

Comparison Operators: A comparison operator compares two items of the same general type to
produce a logical value of TRUE or FALSE. Comparison operators are often used in conditional
expressions (for example, in an If...Then statement).

Expression Returns

date + integer a Date value, representing a later date

date - integer a Date value, representing an earlier date

date - date an Integer value, representing the number of elapsed days

 Operator Returns TRUE if Example

= equal to If a = b Then ...

<> not equal to If a <> b Then ...

< less than If a < b Then ...

> greater than If a > b Then ...

<= less than or equal to If a <= b Then ...

>= greater than or equal to If a >= b Then ...

Between...And...value is within
range

If x Between f_low And f_high
Then...
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 84 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Each of these comparison operators may be used to compare string expressions, numeric
expressions, or date expressions. Note, however, that comparison operators may not be used to
compare Object, Pen, Brush, Symbol, or Font expressions.

The Between...And... comparison operator lets you test whether a data value is within a range. The
following If...Then statement uses a Between...And... comparison:

If x Between 0 And 100 Then
 Note ”Data within range.”
Else
 Note ”Data out of range.”
End If

The same program could be written another way:

If x >= 0 And x <= 100 Then
 Note ”Data within range.”
Else
 Note ”Data out of range.”
End If

When you use the = operator to compare two strings, MapBasic examines the entire length of both
strings, and returns TRUE if the strings are identical. String comparisons are not case sensitive; so this
If...Then statement considers the two names (“Albany” and “ALBANY”) to be identical:

Dim city_name As String
city_name = ”ALBANY”
If city_name = ”Albany” Then
 Note ”City names match.”
End If

If you wish to perform case-sensitive string comparison, use the StringCompare() function, which is
described in the MapBasic Reference.

Note: Be careful when comparing fixed-length and variable-length strings. MapBasic automatically
pads every fixed-length string with spaces, if necessary, to ensure that the string fills the
allotted space. Variable-length strings, however, are not padded in this manner. Depending on
your data and variables, this difference might mean that two seemingly-identical strings are not
actually equal.

You can use the RTrim$() function to obtain a non-padded version of a fixed-length string. You then
can compare the value returned by RTrim$() with a variable-length string, without worrying about
interference from padded spaces.

Logical Operators: Logical operators operate on logical values to produce a logical result of TRUE or
FALSE:

Operator Returns TRUE if Example

And both operands are TRUE If a And b Then…

Or either operand is TRUE If a Or b Then…

Not operand is FALSE. If Not a Then…
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 85 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
For example, the following If...Then statement performs two tests, testing whether the variable x is less
than zero, and testing whether x is greater than ten. The program then displays an error message if
either test failed.

If x < 0 Or x > 10 Then
 Note ”Number is out of range.”
End If

Geographic Operators: These operators act on Object expressions to produce a logical result of
TRUE or FALSE.

For a more complete discussion of graphic objects, see Chapter 10: Graphical Objects.

MapBasic Operator Precedence
Some operators have higher precedence than others. This means that in a complex expression
containing multiple operators, MapBasic follows certain rules when determining which operations to
carry out first. To understand how MapBasic processes complex expressions, you must be familiar with
the relative precedence of MapBasic’s operators.

Consider the following mathematical assignment:

x = 2 + 3 * 4

This assignment involves two mathematical operations addition and multiplication. Note that the end
result depends on which operation is performed first. If you perform the addition first (adding 2 + 3, to
obtain 5), followed by the multiplication (multiplying 5 * 4), the end result is 20. In practice, however,
multiplication has a higher precedence than addition. This means that MapBasic performs the
multiplication first (multiplying 3 * 4, to obtain 12), followed by the addition (adding 2 + 12, to obtain 14).

Operator Returns TRUE if Example

Contains first object contains centroid of
second object

If a Contains b Then...

Contains Part first object contains part of second
object

If a Contains Part b Then...

Contains Entire first object contains all of second
object

If a Contains Entire b Then...

Within first object’s centroid is within sec-
ond object

If a Within b Then...

Partly Within part of first object is within second
object

If a Partly Within b Then...

Entirely Within all of first object is within second
object

If a Entirely Within b Then...

Intersects the two objects intersect at some
point

If a Intersects b Then...
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 86 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
You can use parentheses to override MapBasic’s default order of precedence. The following
assignment uses parentheses to ensure that addition is performed before multiplication:

x = (2 + 3) * 4

The following table identifies the precedence of each MapBasic operator.

Operators appearing on the same row have equal precedence. Operators of higher priority are
processed first. Operators of the same precedence are evaluated left to right in the expression, except
exponentiation, which evaluates from right to left.

Looping, Branching, and Other Flow-Control

Flow-control statements affect the order in which other statements are executed. MapBasic has three
main types of flow-control statements:

• Branching statements cause MapBasic to skip over certain statements in your program (for
example, If...Then, GoTo).

• Looping statements cause MapBasic to repeatedly execute one or more designated
statements in your program (for example, For...Next, Do...While).

• Other statements provide special flow-control (for example, End Program).

If...Then Statement
MapBasic’s If...Then statement is very similar to comparable If...Then statements in other languages.
The If...Then statement tests a condition; if the condition is TRUE, MapBasic executes the statements
which follow the Then keyword. In the following example, MapBasic displays an error message and
calls a sub-procedure if a counter variable is too low:

If counter < 0 Then
 Note ”Error: The counter is too low.”
 Call reset_counter
End If

Highest priority:

Lowest Priority:

parentheses
exponentiation
negation
multiplication, division, Mod, integer division
addition, subtraction, string concatenation (&)
geographic operators, comparison operators, Like
Not
And
Or
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 87 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
An If...Then statement can have an optional Else clause. In the event that the original test condition
was FALSE, MapBasic executes the statements following the Else keyword instead of executing the
statements following the Then keyword. The following example demonstrates the optional Else clause.

If counter < 0 Then
 Note ”Error: The counter is too low.”
 Call reset_counter
Else
 Note ”The counter is OK.”
End If

An If...Then statement can also have one or more optional ElseIf clauses. The ElseIf clause tests an
additional condition. If the statement includes an ElseIf clause, and if the original condition turned out
to be FALSE, MapBasic will test the ElseIf clause, as in the following example:

If counter < 0 Then
 Note ”Error: The counter is too low.”
 Call reset_counter
ElseIf counter > 100 Then
 counter = 100
 Note ”Error: The counter is too high; resetting to 100.”
Else
 Note ”The counter is OK.”
End If

Note: ElseIf is a single keyword. A single If...Then statement can include a succession of two or
more ElseIf clauses, subsequently testing for condition after condition. However, if you want to
test for more than two or three different conditions, you may want to use the Do...Case
statement (described below) instead of constructing an If...Then statement with a large
number of ElseIf clauses.

Do Case Statement
The Do Case statement performs a series of conditional tests, testing whether a certain expression is
equal to one of the values in a list of potential values. Depending on which value the expression
matches (if any), MapBasic carries out a different set of instructions.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 88 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
The following example tests whether the current month is part of the first, second, third, or fourth
quarter of the fiscal year. If the current month is part of the first quarter (January-February-March), the
program assigns a text string an appropriate title (“First Quarter Results”). Alternately, if the current
month is part of the second quarter, the program assigns a different title (“Second Quarter Results”),
etc.

Dim current_month, quarter As SmallInt,
 report_title As String
current_month = Month(CurDate())
’ At this point, current_month is 1 if current date
’ is in January, 2 if current date is in February, etc.
Do Case current_month
 Case 1, 2, 3
 ’ If current month is 1 (Jan), 2 (Feb) or 3 (Mar),
 ’ we’re in the First fiscal quarter.
 ’ Assign an appropriate title.
 report_title = ”First Quarter Results”
 quarter = 1
 Case 4, 5, 6
 report_title = ”Second Quarter Results”
 quarter = 2
 Case 7, 8, 9
 report_title = ”Third Quarter Results”
 quarter = 3
Case Else
 ’
 ’ If current month wasn’t between 1 and 9, then
 ’ current date must be in the Fourth Quarter.
 ’
 report_title = ”Fourth Quarter Results”
 quarter = 4
End Case

Note: The Case Else clause in the final part of the Do Case construction. Case Else is an optional
clause. If a Do Case statement includes a Case Else clause, and if none of the previous Case
clauses matched the expression being tested, MapBasic carries out the statements following
the Case Else clause. The Case Else clause must be the final clause in the Do Case
construction.

GoTo Statement
The GoTo statement tells MapBasic to go to a different part of the program and resume program
execution from that point. The GoTo statement specifies a label. For the GoTo statement to work,
there must be a label elsewhere within the same procedure. A label is a name which begins a line.
Each label must end with a colon (although the colon is not included in the GoTo statement).

If counter < 0 Then
 GoTo get_out
End If
...
get_out:
End Program

Many programming professionals discourage the use of GoTo statements. Careful use of other flow-
control statements, such as If...Then, usually eliminates the need to use GoTo statements. Thus, you
may want to avoid using GoTo statements.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 89 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
For...Next Statement
The For...Next statement sets up a loop that executes a specific number of times. With each iteration
of the loop, MapBasic executes all statements that appear between the For and Next clauses. When
creating a For...Next loop, you must specify the name of a numeric variable as a counter. You must
also specify that counter variable’s starting and ending values. With each iteration of the loop,
MapBasic increments the counter variable by some step value. By default, this step value is one. To
use a different increment, include the optional Step clause.

The following example uses a For...Next loop to add the values from an array of numbers:

Dim monthly_sales(12), grand_total As Float,
 next_one As SmallInt
...
For next_one = 1 To 12
 grand_total = grand_total + monthly_sales(next_one)
Next

At the start of the For...Next statement, MapBasic assigns the start value to the counter variable. In the
example above, MapBasic assigns a value of one to the variable: next_one. MapBasic then executes
the statements that appear up to the Next keyword. After each iteration of the loop, MapBasic
increments the counter variable. If the counter variable is less than or equal to the end value (for
example, if next_one is less than or equal to twelve), MapBasic performs another iteration of the loop.

A For...Next loop halts immediately if it encounters an Exit For statement. This allows you to
conditionally halt the loop prematurely.

Note: If you construct a For...Next loop which uses precise floating-point values (for example, For i =
0.1 to 1.0 Step 0.1), the loop may behave differently on MapInfo for Macintosh than it behaves
on MapInfo for Windows (i.e., there may be one more loop iteration with Macintosh than with
Windows). This is a result of the way that floating-point math is handled internally on the
Macintosh.

See the MapBasic Reference for more information on the For...Next loop.

Do...Loop
The Do...Loop statement continually executes a group of statements for as long as a test condition
remains TRUE or, optionally, for as long as the condition remains FALSE.

There are different forms of the Do...Loop statement, depending on whether you want to test the
looping condition before or after the body of the statements that are executed. The following program
tests the loop condition at the end of the loop:

Dim sales_total, new_accounts(10) As Float,
 next_one As SmallInt
next_one = 1
Do
 sales_total = sales_total + new_accounts(next_one)
 next_one = next_one + 1
Loop While next_one <= UBound(new_accounts)

Note that the preceding loop always executes for at least one iteration, because the looping condition
is not tested until the end of the loop.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 90 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
The following loop tests the loop condition at the start of the loop. Because the condition is tested at the
start of the loop, the statements within the body of the loop may never be executed. If the test condition
is FALSE from the beginning, the statements within the following Do...Loop will never be executed.

Dim sales_total, new_accounts(10) As Float,
 next_one As SmallInt
next_one = 1
Do While next_one <= UBound(new_accounts)
 sales_total = sales_total + new_accounts(next_one)
 next_one = next_one + 1
Loop

In the examples above, both Do...Loop statements included the keyword While; thus, both loops
continue while the test condition remains TRUE. Alternately, a Do...Loop can use the Until keyword
instead of the keyword While. If a Do...Loop statement specifies Until, the loop will continue only for
as long as the test condition remains FALSE.

A Do...Loop statement halts immediately if it encounters an Exit Do statement. This statement allows
you to conditionally terminate a loop prematurely.

While...Wend Loop
MapBasic supports the conventional BASIC While...Wend loop syntax. A While...Wend statement is
very similar to a Do While...Loop statement.

If you are an experienced BASIC programmer, and you therefore are in the habit of using
While...Wend statements, you can continue to use While...Wend statements as you use MapBasic.
Note, however, that the Do...Loop statement syntax is in some ways more powerful than the
While...Wend syntax. You can exit a Do...Loop statement prematurely, through the Exit Do statement,
but there is no corresponding statement for exiting a While...Wend loop.

See the MapBasic Reference for more information on the While...Wend loop.

Ending Your Program
The End Program statement halts the MapBasic application, removes any custom menu items
created by the application, and removes the application from memory. End Program also closes any
files opened by the application (through the Open File statement), but it does not close any open
tables.

The End Program statement is not required. In fact, there are situations where you should be careful
not to issue an End Program statement. For example, if your application adds menu items to a
MapInfo Professional menu, you probably want your application to remain running for the duration of
the MapInfo Professional session, because you want your custom menu items to remain available for
the entire session. In such cases, you should be careful not to issue the End Program statement,
because End Program would halt your application and remove your application’s custom menu items.
For a complete discussion of custom menus, see Chapter 7: Creating the User Interface.

Ending Your Program and MapInfo Professional
The End MapInfo statement halts the MapBasic application (much as the End Program statement
does), and then exits the MapInfo Professional software as well.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 91 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Procedures

Procedures (often referred to as sub-procedures) are an integral part of the MapBasic program
architecture. A typical MapBasic program is comprised of numerous sub-procedures; each sub
procedure contains a group of statements that perform a specific task. By breaking your program into
several sub-procedures, you modularize your program, making program development and
maintenance easier in the long run.

Main Procedure
Every MapBasic program has at least one procedure, known as the Main procedure. When you run a
MapBasic application, MapBasic automatically calls that application’s Main procedure.

The following program demonstrates the syntax for explicitly declaring the Main procedure. In this
example, the Main procedure simply issues a Note statement:

Declare Sub Main
Sub Main
 Note ”Hello from MapBasic!”
End Sub

The Declare Sub statement tells MapBasic that a sub-procedure definition will occur further down. You
must have one Declare Sub statement for each sub-procedure in your program. The Declare Sub
statement must appear before the actual sub-procedure definition. Typically, Declare Sub statements
appear at or near the top of your program.

You may recall from Chapter 4: Using the Development Environment that a MapBasic program can
be as simple as a single line. For example, the following statement:

 Note ”Hello from MapBasic!”

is a complete MapBasic program which you can compile and run. Note that even a simple, one-line
program has a Main procedure. However, in this case, we say that the Main procedure is implied
rather than being explicit.

Calling a Procedure
When you run a compiled application, MapInfo Professional automatically calls the Main procedure
(regardless of whether the Main procedure is implied or explicitly defined). The Main procedure can
then call other sub-procedures through the Call statement.

The following program contains two procedures: a Main procedure, and a procedure called
announce_date.

Declare Sub Main
Declare Sub announce_date

Sub Main
 Call announce_date()
End Sub

Sub announce_date
 Note ”Today’s date is ” + Str$(CurDate())
End Sub
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 92 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Calling a Procedure That Has Parameters
Like other modern BASIC languages, MapBasic lets you create sub-procedures which take
parameters. If a sub-procedure takes parameters, they are declared within parentheses which follow
the procedure name in the Sub...End Sub statement.

The following example shows a sub-procedure called check_date, which takes one parameter (a Date
value). The sub-procedure checks to see whether the value of the Date parameter is too old (more
than 180 days old). If the Date parameter value is too old, the procedure sets the Date parameter to the
current date.

Declare Sub Main
Declare Sub check_date(last_date As Date)
Sub Main
 Dim report_date As Date
 report_date = ”01/01/94”
 Call check_date(report_date)
 ’ At this point, the variable: report_date
 ’ may contain the current date (depending on
 ’ what happened in the check_date procedure).
End Sub

Sub check_date(last_date As Date)
 Dim elapsed_days As SmallInt
 elapsed_days = CurDate() - last_date
 If elapsed_days > 180 Then
 last_date = CurDate()
 End If
End Sub

Passing Parameters By Reference
By default, each MapBasic procedure parameter is passed by reference. When a parameter is passed
by reference, the following rules apply:

• The Call statement must specify the name of a variable for each by-reference parameter.
• If the called sub-procedure assigns a new value to a by-reference parameter, the new value is

automatically stored in the caller’s variable. In other words, the sub- procedure can use a by-
reference parameter to return a value to the caller.

Thus, in the example above, the Call statement specifies the name of a Date variable report_date:

Call check_date(report_date)

Then, within the check_date procedure, the parameter is known by the name last_date. When the
check_date procedure performs the assignment last_date = CurDate(), MapBasic automatically
updates the Main procedure’s report_date variable.

Passing Parameters By Value
Sometimes, it is awkward to pass parameters by reference. For each by-reference parameter, you
must specify the name of a variable in your Call statement. At times, you may find this awkward (for
example, because you may not have a variable of the appropriate type).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 93 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Like other modern BASIC languages, MapBasic lets you specify that a procedure parameter will be
passed by value rather than by reference. To specify that a parameter be passed by value, include the
keyword ByVal before the parameter’s name in the Sub...End Sub statement.

When a parameter is passed by value, the following rules apply:

• The Call statement does not need to specify the name of a variable as the parameter. The Call
statement may specify a variable name, a constant value or some other expression.

• If the called sub-procedure assigns a new value to a by-value parameter, the calling procedure
is not affected. In other words, the sub-procedure cannot use a by-value parameter to return a
value to the caller.

The following example shows a procedure (display_date_range) which takes two by-value Date
parameters.

Declare Sub Main
Declare Sub display_date_range(ByVal start_date As Date,
 ByVal end_date As Date)

Sub Main
 Call display_date_range(”1/1”, CurDate())
End Sub

Sub display_date_range(ByVal start_date As Date,
 ByVal end_date As Date)
 Note ”The report date range will be: ” + Str$(start_date)
 + ” through ” + Str$(end_date) + ”.”
End Sub

In this example, both of the parameters to the display_date_range procedure are by-value date
parameters. Thus, when the Main procedure calls display_date_range:

Call display_date_range(”1/1”, CurDate())

neither of the parameters needs to be a Date variable. The first parameter (“1/1”) is a constant Date
expression, and the second parameter is a date expression derived by calling the CurDate() function.

Calling Procedures Recursively
The MapBasic language supports recursive function and procedure calls. In other words, a MapBasic
procedure can call itself.

Programs that issue recursive procedure or function calls may encounter memory limitations. Each
time a program makes a recursive call, MapInfo Professional must store data on the stack; if too many
nested recursive calls are made, the program may generate an out-of-memory error. The amount of
memory used up by a recursive call depends on the number of parameters and local variables
associated with the procedure or function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 94 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Procedures That Act As System Event Handlers

Some procedure names have special meaning in MapBasic. For example, as we have seen, the sub-
procedure named Main is special, since MapBasic automatically calls the Main procedure when you
run an application.

In addition to Main, MapBasic has several other special procedure names: EndHandler,
ForegroundTaskSwitchHandler, RemoteMapGenHandler, RemoteMsgHandler,
RemoteQueryHandler(), SelChangedHandler, ToolHandler, WinChangedHandler,
WinClosedHandler, and WinFocusChangedHandler. Each of these reserved procedure names
plays a special role in MapBasic programming. To fully understand how they work, you need to
understand MapBasic’s approach to system events and event-handling.

What Is a System Event?
In a Graphical User Interface environment, the user controls what happens by typing and by using the
mouse. Technically, we say that mouse-clicks and other actions taken by the user generate system
events. There are many different kinds of events; for example, when the user chooses a menu item, we
say that the user has generated a menu-choose event, and when the user closes a window, we say the
user has generated a window-close event.

What Is an Event Handler?
An event-handler is part of a MapBasic program which responds to a system event. Once the user has
generated an event, the application must respond accordingly. For instance, when the user generates
a menu-choose event, the software may need to display a dialog. Alternately, when the user generates
a window-close event, the software may need to gray out a menu item or hide an entire menu.

In MapBasic, sub-procedures can act as event-handlers. In other words, you can construct your
program in such a way that MapBasic automatically calls one of your sub-procedures when and if a
certain system event occurs.

To build event-handlers that respond to menu or button-pad choices, see Chapter 7: Creating the
User Interface. To build any other types of system event-handlers, you must define a sub-procedure
with a special name. For example, if you want your program to respond automatically whenever the
user closes a window, your application must contain a procedure named WinClosedHandler.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 95 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
The following table lists all of MapBasic’s special handler names. These special handlers are
discussed in more detail in the MapBasic Reference and online Help.

Typically, you do not use the Call statement to call the special procedures listed above. If your program
contains one of these specially named procedures, MapBasic calls that procedure automatically, when
and if a certain type of system event occurs. For example, if your program contains a procedure called
WinClosedHandler, MapBasic automatically calls the WinClosedHandler procedure every time the
user closes a window.

All of the special handler procedures are optional. Thus, you should only include a WinClosedHandler
procedure in your application if you want your application to be notified every time a window is closed.
You should only include a SelChangedHandler procedure in your application if you want your
application to be notified each time Selection changes, etc.

Special Handler Name
Nature of Handler Procedure or Function

(see Reference for details)

EndHandler Called when the application terminates or when the user exits
MapInfo Professional. EndHandler can be used to do clean-up
work (for example, deleting temporary work files).

ForegroundTaskSwitchHan-
dler

Called when MapInfo Professional gets the focus (becomes the
active application) or loses the focus.

RemoteMapGenHandler Called when an OLE Automation client calls the MapGenHandler
method; used primarily in MapInfo ProServer applications.

RemoteMsgHandler Called when the application is acting as the server in an interpro-
cess conversation, and the remote client sends an execute
request.

RemoteQueryHandler() Called when the application is acting as the server in an interpro-
cess conversation, and the remote client sends a peek request.

SelChangedHandler Called whenever the Selection table changes. Since the Selec-
tion table changes frequently, the SelChangedHandler procedure
should be as brief as possible to avoid slowing system perfor-
mance.

ToolHandler Called when the user clicks in a Mapper, Browser, or Layout win-
dow using the MapBasic tool.

WinChangedHandler Called when the user pans, scrolls, or otherwise resets the area
displayed in a Mapper.
Since Mapper windows can change frequently, the Win-
ChangedHandler procedure should be as brief as possible to
avoid slowing system performance.

WinClosedHandler Called when the user closes a Mapper, Browser, Grapher, or
Layout.

WinFocusChangedHandler Called when the window focus changes (i.e., when the user
changes which window is the active window).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 96 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
The following program defines a special event-handler procedure named ToolHandler. Note that this
program does not contain any Call statements. Once this program is running, MapBasic calls the
ToolHandler procedure automatically, when and if the user selects the MapBasic tool and clicks on a
Mapper, Browser, or Layout window.

Include ”mapbasic.def”
Declare Sub Main
Declare Sub ToolHandler
Sub Main
 Note ”The ToolHandler demonstration is now in place. ”
 + ”Select the MapBasic tool (+) and click on a Map ”
 + ”to see a printout of map coordinates.”
End Sub
Sub ToolHandler
 If WindowInfo(FrontWindow(),
 WIN_INFO_TYPE) = WIN_MAPPER Then
 Print ”X: ” + Str$(CommandInfo(CMD_INFO_X))
 Print ”Y: ” + Str$(CommandInfo(CMD_INFO_Y))
 Print ” ”
 End If
End Sub

Within a system event handler procedure, you can call the CommandInfo() function to learn more
about the event that made MapBasic call the handler. In the example above, the ToolHandler
procedure calls CommandInfo() to determine the map coordinates where the user clicked.

The following sample SelChangedHandler procedure appears in the sample program, TextBox
(textbox.mb). This procedure automatically disables (grays out) a menu item whenever the user de-
selects all rows, and automatically re-enables the menu item whenever the user selects more rows.

See textbox.mb for more details.

Sub SelChangedHandler
 If SelectionInfo(SEL_INFO_NROWS) < 1 Then
 Alter Menu Item create_sub Disable
 Else
 Alter Menu Item create_sub Enable
 End If
End Sub

When Is a System Event Handler Called?
By default, a MapBasic application terminates after executing all statements in the Main procedure.
However, if an application contains one or more of the special handler procedures listed above (for
example, if an application contains a ToolHandler procedure), the application remains in memory after
the Main procedure is finished. An application in this state is said to be sleeping. A sleeping application
remains dormant in memory until an appropriate event occurs (for example, until the user clicks with
the MapBasic tool). When the event occurs, MapBasic automatically calls the sleeping application’s
handler procedure.

Note: If any procedure in an application issues the End Program statement, the entire application is
removed from memory, regardless of whether the application contains special handler
procedures. You must avoid using the End Program statement for as long as you want your
program to remain available.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 97 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Custom MapBasic menus work in a similar manner. If a MapBasic application adds its own items to the
MapInfo Professional menu structure, the application goes to sleep and waits for the user to choose
one of the custom menu items. For a complete discussion of how to customize MapInfo Professional’s
menus, see Chapter 7: Creating the User Interface.

Tips for Handler Procedures

Keep Handler Procedures Short
Bear in mind that some system event-handler procedures are called frequently. For example, if you
create a SelChangedHandler procedure, MapInfo Professional calls the procedure every time the
Selection table changes. In a typical MapInfo Professional session, the Selection table changes
frequently, therefore, you should make event-handler procedures, such as SelChangedHandler, as
short as possible.

Selecting Without Calling SelChangedHandler
If you are using a Select statement, but you do not want the statement to trigger the
SelChangedHandler procedure, include the NoSelect keyword. For example:

Select * From World Into EarthQuery NoSelect

Preventing Infinite Loops
Performing actions within a system handler procedure can sometimes cause an infinite loop. For
example, if you declare a SelChangedHandler procedure, MapInfo Professional calls that procedure
whenever the selection changes. If you issue a Select statement inside of your SelChangedHandler
procedure, the Select statement will cause MapInfo Professional to call the procedure again in a
recursive call. The end result can be an infinite loop, which continues until your program runs out of
memory.

The Set Handler statement can help prevent infinite loops. At the start of your handler procedure,
issue a Set Handler ... Off statement to prevent recursive calling of the handler. At the end of the
procedure, issue a Set Handler ... On statement to restore the handler.

Sub SelChangedHandler
 Set Handler SelChangedHandler Off

 ’ Issuing a Select statement here
 ’ will not cause an infinite loop.

 Set Handler SelChangedHandler On
End Sub
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 98 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Custom Functions
The MapBasic language supports many different functions. Some are standard BASIC functions (for
example, Asc(), Format$(), Val(), etc.) and some are unique to MapInfo Professional and MapBasic
(for example, Distance() and ObjectGeography()). MapBasic also lets you define custom functions.
Once you have defined a custom function, you can call that function just as you can call any of
MapBasic’s standard functions.

The body of a custom function is defined within a Function...End Function construction, which is
syntactically very similar to a Sub...End Sub construction. The general syntax of a Function...End
Function construct is as follows:

Function function_name(parameters, if any) As data_type
 statement list
End Function

The function itself has a data type. This dictates which type of value (for example, Integer, Date, String)
the function returns when called.

Within the body of the Function...End Function construction, the function name acts like a by-
reference parameter. A statement within the Function...End Function construction can assign a value
to the function name; this is the value that MapBasic later returns to the function’s caller.

The example below defines a custom function called money_format(). The money_format() function
takes one numeric parameter (presumably representing a sum of money), and returns a string
(obtained by calling the Format$() function) representing the dollar amount, formatted with commas.

Declare Sub Main
Declare Function money_format(ByVal num As Float) As String
Sub Main
 Dim dollar_amount As String
 dollar_amount = money_format(1234567.89)
 ’ dollar_amount now contains the string: ”$1,234,567.89”
End Sub

Function money_format(ByVal num As Float) As String
 money_format = Format$(num, ”$,#.##;($,#.##)”)
End Function

Scope of Functions
A program can define a custom function that has the same name as a standard MapBasic function.
When the program calls the function, the custom function is executed instead of the standard function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 99 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Compiler Instructions

MapBasic provides two special statements which make it easier to manage large-scale application
development:

• The Define statement lets you define a shorthand identifier which has a definition; the
definition is substituted for the identifier at compile time.

• The Include statement lets you combine two or more separate program files into one
compilable program.

The Define Statement
Through the Define statement, you can define an identifier which acts as a shorthand equivalent for
some specific value.

Use a Define statement whenever you find yourself frequently typing an expression that is difficult to
remember or to type.

For example, if your program deals extensively with objects and object colors, you might find that you
frequently need to type in the value 16711680, a numeric code representing the color red. Typing such
a long number quickly becomes tedious. To spare yourself the tedium of typing in 16711680, you could
place the following Define statement in your program:

 Define MY_COLOR 16711680

This Define statement creates an easy-to-remember shorthand keyword (MY_COLOR) representing
the number 16711680. After you enter this Define statement, you can simply type MY_COLOR in
every place where you would have typed 16711680. When you compile your program, MapBasic will
assign each occurrence of MY_COLOR a value of 16711680.

There are long-term benefits to using defined keywords. Suppose that you develop a large application
which includes many references to the identifier MY_COLOR. Lets presume that you then decide that
red is not a good color choice, and you want to use green (65280) instead. You could easily make the
switch from red to green simply by changing your Define statement to read:

 Define MY_COLOR 65280

The standard MapBasic definitions file, mapbasic.def, contains many Define statements, including
Define statements for several commonly-used colors (BLACK, WHITE, RED, GREEN, BLUE, CYAN,
MAGENTA, and YELLOW). Use the Include statement to incorporate mapbasic.def into your program.

The Include Statement
Through the Include statement, you can incorporate two or more separate program files into one
MapBasic application. The Include statement has the following syntax:

 Include ”filename”

where filename is the name of a text file containing MapBasic statements. When you compile a
program that contains an Include statement, the compiler acts as if the included text is part of the
program being compiled.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 100 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Many MapBasic applications use the Include statement to include the standard MapBasic definitions
file, mapbasic.def:

 Include ”mapbasic.def”

mapbasic.def provides Define statements for many standard MapBasic identifiers (TRUE, FALSE,
RED, GREEN, BLUE, TAB_INFO_NAME, etc.).

The filename that you specify can include a directory path. If the filename that you specify does not
include a directory path, the MapBasic compiler looks for the file in the current working directory. If the
file is not found in that directory, the compiler looks in the directory where the MapBasic software is
installed.

As you develop more and more MapBasic programs, you may find that you use certain sections of
code repeatedly. Perhaps you have written a library of one or more custom functions, and you wish to
use those custom functions in every MapBasic program that you write. You could put your custom
functions into a separate text file, perhaps calling the text file functs.mb. You could then incorporate the
function library into another program by issuing the statement:

 Include ”functs.mb”

Using Include statements also lets you work around the memory limitations of the MapBasic text
editor. As discussed in Chapter 4: Using the Development Environment, each MapBasic edit
window is subject to memory limits; once a program file grows too large, you can no longer add
statements to the file using a MapBasic edit window. If this happens, you may want to break your
program into two or more separate program files, then combine the files using the Include statement.
Alternately, you could combine the separate modules using a project file; see Using the Development
Environment in Chapter 4 on page 56 for details.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 101 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Program Organization

A MapBasic application can include any or all of the different types of statements described in this
chapter. However, the different pieces of a MapBasic program must be arranged in a particular
manner. For example, Global statements may not be placed inside of a Sub...End Sub definition.

The following illustration shows a typical arrangement of the various program components.

Global level statements appear at the top of the program . . .

 Include ”mapbasic.def”
 other Include statements
 Type...End Type statements
 Declare Sub statements
 Declare Function statements
 Define statements
 Global statements

. . . followed by the Main procedure definition . . .

 Sub Main
 Dim statements
 ...
 End Sub

. . . followed by additional sub-procedure definitions . . .

 Sub ...
 Dim statements
 ...
 End Sub

. . . and custom Function definitions . . .

 Function ...
 Dim statements
 ...
 End Function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 102 MB_UG.pdf

6
Debugging and Trapping
Runtime Errors
Even if your program compiles successfully, it may still contain runtime
errors (errors that occur when you run your program). For example, if your
program creates large database files, the program may generate an error
condition if you run it when there is no free disk space.

This chapter shows you how to deal with runtime errors. This is a two-
step process: first, you debug your program to find out where the error
occurs; then, you modify your program to prevent the error from
happening again.

Sections in this Chapter:

Runtime Error Behavior . 104
Debugging a MapBasic Program . 104
Error Trapping. 106

User Guide Chapter 6: Debugging and Trapping Runtime Errors
Runtime Error Behavior

There are two main types of programming errors: compilation errors and runtime errors. Compilation
errors, discussed in Chapter 4: Using the Development Environment, are syntax errors or other
typographical mistakes that prevent a program from compiling successfully.

runtime errors are errors that occur when the user actually runs an application. runtime errors occur for
various reasons; often, the reason has to do with precise conditions that exist at runtime. For example,
the following statement compiles successfully:

 Map From stats

However, if there is no table named “stats,” this program will generate a runtime error. When a runtime
error occurs, MapInfo halts the MapBasic application, and then displays a dialog describing the error.

The error message identifies the name of the program file and the line number at which the error
occurred. In the example above, the name of the program is map_it, and the line number containing
the error is 22. This line number identifies which part of your program caused the runtime error. Once
you know the line number, you can return to the MapBasic development environment and use the Go
To Line command (on the Search menu) to locate the statement that caused the problem.

Debugging a MapBasic Program

Some runtime errors are easy to correct. For example, some runtime errors can be caused by modest
typing errors (for example, in the example above, the programmer probably meant to enter the table
name as STATES instead of STATS). Other errors, however, can be harder to locate. To help you
detect and correct bugs in your program, MapBasic provides debugging tools (the Stop and Continue
statements) which work in conjunction with MapInfo’s MapBasic Window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 104 MB_UG.pdf

User Guide Chapter 6: Debugging and Trapping Runtime Errors
Summary of the Debugging Process
If part of your program is not working correctly, you can use the following procedure to identify where
the problem occurs:

1. Within the MapBasic development environment, edit your program, and place a Stop
statement just before the part of your program that seems to be failing.

2. Recompile and run your program.
When your program reaches the Stop statement, MapBasic temporarily suspends execution of
your program and displays a debugging message in the MapBasic window (for example,
“Breakpoint at textbox.mb line 23”).

3. Within the MapBasic window:
Type ? Dim to see a list of all local variables that are in use.

Type ? Global to see a list of all global variables that are in use.

Type ? variable_name to see the current contents of a variable.

Type ? variable_name = new_value to change the contents of that variable.

4. When you are finished examining and modifying the contents of variables, type Continue in the
MapBasic window to resume program execution. Alternately, you can choose the Continue
Program command from MapInfo’s File menu. Note that while a program is suspended, the
File menu contains a Continue Program command instead of a Run Program command.

Limitations of the Stop Statement
In the following cases, MapBasic does not allow you to suspend a program through the Stop
statement:

• You may not use a Stop statement within a custom Function...End Function construct.
• You may not use a Stop statement within a Dialog control handler, because while the handler

is active, the dialog is still on the screen.
• You may not use a Stop statement within a ProgressBar handler.
• You may not debug one program while another program is running.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 105 MB_UG.pdf

User Guide Chapter 6: Debugging and Trapping Runtime Errors
• Through the Run Application statement, one MapBasic application can “spawn” another
application. However, you may not use the Stop statement to suspend execution of the
spawned application.
Even without using the Run Application statement, it is possible to run separate MapBasic
programs at one time. For example, if you run the TextBox application, TextBox creates its own
custom menu, then remains sleeping until you choose an item from that menu. After loading
TextBox, you can run other MapBasic applications. However, you may not use the Stop
statement while you have multiple applications running simultaneously.

Other Debugging Tools
MapBasic’s Note and Print statements are also helpful when debugging a program. For example, if
you wish to observe the contents of a variable as it changes, simply add a Print statement to your
program:

 Print ”Current value of counter: ” + counter

to print a message to MapBasic’s Message window. The sample program AppInfo.mbx allows you to
examine the values of global variables in any MapBasic applications that are running.

Error Trapping

A well-designed program anticipates the possibility of runtime errors and includes precautions
whenever possible. Intercepting and dealing with runtime errors is known as error trapping. In
MapBasic, error trapping involves using the OnError statement.

Veteran BASIC programmers take note: in MapBasic, OnError is a single keyword.

At any point during execution, error trapping is either enabled or disabled. By default, all procedures
and functions start with error trapping disabled. The OnError statement enables error trapping.

Typically, OnError specifies a label that must appear at another location in the same procedure or
function. The statements following the label are known as the error-trapping routine. If an error occurs
while an error-trapping routine has been enabled, MapBasic jumps to the specified label and executes
the error-trapping routine instead of halting the application.

Within the error-trapping routine, you can call the Err() function to obtain an Integer code indicating
which error occurred. Similarly, Error$() returns a string describing the error message. For a complete
listing of potential MapBasic error codes and their descriptions, see the text file errors.doc which is
included with MapBasic.

Within the error-trapping routine, you can call the Err() function to obtain an Integer code indicating
which error occurred. Similarly, Error$() returns a string describing the error message. For a complete
listing of potential MapBasic error codes and their descriptions, see the text file Error List, which is
included with MapBasic. Each error-trapping routine ends with a Resume statement. The Resume
statement tells MapBasic which line to go to once the error-trapping routine is finished.

For more about error trapping, see OnError, Resume, Err() and Error$() in the MapBasic Reference.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 106 MB_UG.pdf

User Guide Chapter 6: Debugging and Trapping Runtime Errors
Note: MapBasic can only handle one error at a time. If you enable error-trapping and then an error
occurs, MapBasic jumps to your error-handling routine. If another error occurs within the error-
handling routine (i.e., before the Resume statement), your MapBasic application halts.

Example of Error Trapping
The program below opens a table called orders and displays it in Map and Browse windows. An error-
trapping routine called bad_open handles any errors that relate to the Open Table statement. A
second error-trapping routine called not_mappable handles errors relating to the Map statement.

Sub orders_setup
 ’ At the start, error trapping is disabled
 OnError Goto bad_open
 ’ At this point, error trapping is enabled, with
 ’ bad_open as the error-handling routine.
 Open Table ”orders.tab”
 OnError Goto not_mappable

 ’ At this point, error trapping is enabled, with
 ’ not_mappable as the new error-handling routine.
 Map From orders
 OnError Goto 0
 Browse * From orders

last_exit:
 Exit Sub
 ’ The Exit Sub prevents the program from
 ’ unintentionally executing the error handlers.

bad_open:
 ’ This routine called if Open statement had an error.
 Note ”Couldn’t open the table Orders... Halting.”
 Resume last_exit

not_mappable:
 ’ This routine called if the Map statement had an error
 Note ”No map data; data will only appear in Browser.”
 Resume Next
End Sub

The statement OnError Goto bad_open enables error trapping. If an error occurs because of the
Open Table statement, MapBasic jumps to the error-trapping routine at the label bad_open. The error-
trapping routine displays an error message, then issues a Resume statement to resume execution at
the label last_exit.

If the Open Table statement is successful, the program then issues the statement OnError Goto
not_mappable. This line resets the error trapping, so that if the Map statement generates an error,
MapBasic jumps to not_mappable. The not_mappable error-trapping routine displays a message
telling the user why no Mapper window was presented, and then executes a Resume Next statement.
The Resume Next statement tells MapBasic to skip the line that generated the error, and resume with
the following statement.

The OnError Goto 0 statement disables error trapping. Thus, if an error occurs as a result of the
Browse statement, that error is not trapped, and program execution halts.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 107 MB_UG.pdf

7
Creating the User Interface
The user interface is an important part of every application. MapBasic
provides you with all the tools you need to customize MapInfo
Professional’s user interface.

Sections in this Chapter:

Introduction to MapBasic User Interface Principles 109
Event-Driven Programming . 109
Menus . 111
Standard Dialog Boxes . 121
Custom Dialog Boxes . 123
Windows . 131
ButtonPads (Toolbars) . 138
Integrating Your Application Into MapInfo Professional. . 145
Performance Tips for the User Interface 147

User Guide Chapter 7: Creating the User Interface
Introduction to MapBasic User Interface Principles

By writing a MapBasic program, you can create a custom user interface for MapInfo Professional. A
MapBasic program can control the following elements of the user interface:

• Menus: MapBasic programs can add custom menu items to existing menus, remove menus
from the menu bar, and create entirely new menus.

• Dialogs: MapBasic programs can display custom dialog boxes, tailored to fit the users’ needs.
• Windows: MapBasic programs can display standard types of MapInfo Professional windows

(for example, Map and Browse windows) and customize the contents of those windows.
MapBasic can also display messages in a special window (the Message window) and on the
MapInfo Professional status bar.

• ButtonPads (also known as toolbars): MapBasic programs can add custom buttons to existing
ButtonPads, or create entirely new ButtonPads. MapInfo Professional includes a special
ButtonPad, Tools, to provide a place where MapBasic utilities can add custom buttons. For
example, the ScaleBar application adds its custom button to the Tools pad.

The sample application, OverView, demonstrates many aspects of a custom interface created in
MapBasic. When the user runs OverView, MapBasic adds custom items to the Tools menu. If the user
chooses the custom Setup Overview menu item, MapBasic displays a custom dialog. If the user
chooses a table from this dialog, MapBasic opens a new Map window to display the table.

Event-Driven Programming

MapBasic follows a programming model known as event-driven programming. To understand how a
MapBasic program can create a custom user interface, you must first understand the basic principles
of event-driven programming.

What Is an Event?
In a Graphical User Interface environment, the user controls what happens by typing and by using the
mouse. Technically, we say that mouse-clicks and other actions taken by the user generate events.
There are many different kinds of events; for example, when the user chooses a menu item, we say
that the user has generated a menu-choose event, and when the user closes a window, we say the
user has generated a window-close event.

What Happens When The User Generates A Menu Event?
When the user generates an event, the software must respond accordingly. Thus, when the user
chooses a menu item, the software may need to display a dialog or, depending on which menu item the
user chooses, the software may need to take some other action, such as opening or closing a table or
a window. In general, when the user generates an event, we say that the software handles the event.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 109 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
If a MapBasic application creates a custom menu, and the user chooses an item from that menu, the
MapBasic application handles the menu-choose event. Typically, the MapBasic application handles the
event by calling a procedure. In this situation, we say that the procedure acts as an event-handler, or
handler for short.

Thus, creating custom menu items is typically a two-step process:

1. Customize the MapInfo Professional menu structure, using statements such as Create Menu
or Alter Menu.

2. Specify a handler for each custom menu item. A handler can be a sub-procedure that appears
elsewhere in your program. Set up each handler procedure to perform whatever tasks are
appropriate for the corresponding menu item(s). Alternately, instead of specifying a procedure
as the menu item’s handler, you can specify that the menu item call a standard MapInfo
Professional command. Thus, you could create a custom menu item that invokes the Create
Thematic Map command (from MapInfo Professional’s Map menu).

As noted in Chapter 4: Using the Development Environment, the Call statement lets you call a sub-
procedure. However, when a sub-procedure acts as an event-handler, you do not issue any Call
statements. Instead of issuing Call statements, you include a Calling clause within the Create Menu
statement.

For example, the TextBox application issues the following Create Menu statement:

Create Menu ”TextBox” As
 ”&Create Text Boxes...” Calling create_sub,
 ”Close TextBox” Calling Bye,
 ”About TextBox...” Calling About

This statement creates a custom menu with several menu items, each of which contains a Calling
clause (for example, Calling create_sub). Each Calling clause identifies the name of a procedure that
appears elsewhere in the TextBox.MB program. Thus, create_sub, Bye, and About are all sub-
procedure names.

When and if the user chooses the Create Text Boxes item from the TextBox menu, MapBasic
automatically calls the create_sub procedure. Thus, the create_sub procedure acts as the handler for
that menu item.

How Does a Program Handle ButtonPad Events?
Each button on a custom MapBasic ButtonPad has a handler procedure. Like the Create Menu
statement, the Create ButtonPad statement contains a Calling clause which lets you designate a
handler procedure. When the user works with a custom button, MapBasic calls the sub-procedure that
you named in the Create ButtonPad statement.

MapBasic lets you create different types of custom buttons. With custom PushButtons, MapBasic calls
the button’s handler the moment the user chooses the button. With custom ToolButtons, MapBasic
only calls the button’s handler if the user chooses the tool and then clicks on a window. For more
information, see the ButtonPads discussion later in this chapter.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 110 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
How Does a Program Handle Dialog Events?
Custom MapBasic dialogs can call handler procedures. Thus, if you create a custom dialog that
contains a check-box, MapBasic can call a handler procedure each time the user checks or clears the
check-box. However, depending on your application, you may not need to create handlers for your
dialogs. For a discussion of custom dialogs, see the discussion of Custom Dialogs later in this chapter.

Menus

Menus are an essential element of the graphical user interface. Accordingly, the MapBasic language
lets you control every aspect of MapInfo Professional’s menu structure. With a few lines of code, you
can customize any or all of MapInfo Professional’s menus or menu items.

Menu Fundamentals
MapInfo Professional’s menu structure consists of the following elements:

The menu bar is the horizontal bar across the top of the MapInfo Professional work area. The default
MapInfo Professional menu bar contains words such as File, Edit, Objects, Query, etc.

A menu is a vertical list of commands that drops down if you click on the menu bar. For example, most
applications include a File menu and an Edit menu.

A menu item is an individual command that appears on a menu. For example, the File menu typically
contains menu items such as Open, Close, Save, and Print. Menu items are sometimes referred to as
commands (for example, the File > Save command.

The concepts of menu, menu bar, and menu item are interrelated. Each menu is a set of menu items.
For example, the File menu contains items such as Open, Close, Save, etc. The menu bar is a set of
menus.

Menu

Menu Bar

Menu Items
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 111 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
When the user chooses a menu item, some sort of action is initiated. Different menu items invoke
different types of actions; some menu items cause dialog boxes to be displayed, while other menu
items produce an immediate effect.

The action associated with a menu item is referred to as the menu item’s handler. A menu item
handler can either be a standard MapInfo Professional command code or a custom MapBasic sub-
procedure name. In other words, when the user chooses a menu item, MapInfo Professional “handles”
the menu-choose event, either by running a standard command code or by calling a sub-procedure
from your application.

Adding New Items To A Menu
To add one or more custom items to an existing menu, use the Alter Menu statement.

For example, the following statement adds two custom menu items to the Query menu (one item called
Annual Report, and another item called Quarterly Report):

Alter Menu ”Query” Add
 ”Annual Report” Calling report_sub,
 ”Quarterly Report” Calling report_sub_q

For each of the custom menu items, the Alter Menu statement specifies a Calling clause. This clause
specifies what should happen when and if the user chooses the menu item. If the user chooses the
Annual Report item, MapInfo Professional calls the sub-procedure report_sub.

If the user chooses the Quarterly Report item, MapInfo Professional calls the sub-procedure
report_sub_q. These sub-procedures (report_sub and report_sub_q) must appear elsewhere within
the same MapBasic application.

You also can create custom menu items that invoke standard MapInfo Professional commands, rather
than calling MapBasic sub-procedures. The definitions file menu.def contains a list of definitions of
menu codes (for example, M_FILE_NEW and M_EDIT_UNDO). Each definition in that file corresponds
to one of the standard MapInfo Professional menu commands (for example, M_EDIT_UNDO
corresponds to the Edit menu’s Undo command). If a menu item’s Calling clause specifies one of the
menu codes from menu.def, and the user chooses that menu item, MapInfo Professional invokes the
appropriate MapInfo Professional command.

For example, the following statement defines a “Color Coded Maps” menu item. If the user chooses
Color Coded Maps, MapInfo Professional runs the command code M_MAP_THEMATIC. In other
words, if the user chooses the menu item, MapInfo Professional displays the Create Thematic Map
dialog, just as if the user had chosen the Map > Create Thematic Map command.

Alter Menu ”Query” Add
 ”Color Coded Maps” Calling M_MAP_THEMATIC

Removing Items From A Menu
An application can remove individual menu items. The following statement removes the Delete Table
item from MapInfo Professional’s Table > Maintenance menu. Note that the identifier
M_TABLE_DELETE is a code defined in the menu definitions file, menu.def.

Alter Menu ”Maintenance” Remove M_TABLE_DELETE
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 112 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
If you want to remove several items from a menu, there are two techniques you can use: you can issue
an Alter Menu ... Remove statement which lists all the items you wish to remove; or you can issue a
Create Menu ... statement which redefines the menu entirely, including only the items you want.

For example, the following statement creates a simplified version of the Map menu that includes only
three items (Layer Control, Previous View, and Options):

Create Menu ”Map” As
 ”Layer Control” Calling M_MAP_LAYER_CONTROL,
 ”Previous View” Calling M_MAP_PREVIOUS,
 ”Options” Calling M_MAP_OPTIONS

Creating A New Menu
To create an all-new menu, use the Create Menu statement. For example, the sample application,
TextBox, issues the following Create Menu statement:

Create Menu ”TextBox” As
 ”&Create Text Boxes...” Calling create_sub,
 ”Close TextBox” Calling Bye,
 ”About TextBox...” Calling About

The Create Menu statement creates a new “TextBox” menu. However, the act of creating a menu does
not cause the menu to appear automatically. To make the new menu become visible, you must take an
additional step.

You could make the TextBox menu visible by adding it to the menu bar, using the Alter Menu Bar
statement:

Alter Menu Bar Add ”TextBox”

The Alter Menu Bar Add statement adds the menu to the right end of the menu bar. The menu
produced would look like this:

In practice, adding menus onto the menu bar is sometimes problematic. The amount of space on the
menu bar is limited, and every time you add a menu to the menu bar, you fill some of the remaining
space. Therefore, for the sake of conserving space on the menu bar, the TextBox application uses a
different technique for displaying its menu: instead of adding its menu directly onto the menu bar, the
TextBox application uses an Alter Menu statement to add its menu as a hierarchical sub-menu,
located on the Tools menu.

Alter Menu ”Tools” Add
 ”(-”,
 ”TextBox” As ”TextBox”

As a result of this statement, the TextBox menu appears as a hierarchical menu located on the Tools
menu. The resulting Tools menu looks like this:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 113 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Sample programs that are provided with MapInfo Professional, such as ScaleBar and OverView, follow
the same convention (placing their menu items on hierarchical menus located off of the Tools menu).
Thus, if you run the TextBox application, the ScaleBar application, and the OverView application, all
three applications add their commands to the Tools menu.

If each of the sample programs (ScaleBar, etc.) added a menu directly onto the menu bar, the menu
bar would quickly become over-crowded. Stacking hierarchical menus onto the Tools menu (or any
other menu) is one way of conserving space on the menu bar. Note, however, that some users find
hierarchical menus significantly harder to use.

How you design and organize your menus will depend on the nature of your application. Depending on
your application, you may need to add one, two, or even several menus to the menu bar.

Regardless of whether you attach your menus to the menu bar or to other menus, MapInfo
Professional is limited to 96 menu definitions. In other words, there can never be more than 96 menus
defined at one time, including MapInfo Professional’s standard menus. This limitation applies even
when you are not displaying all of the menus.

Altering A Menu Item
The MapBasic language lets you perform the following operations on individual menu items:

• You can disable (gray out) a menu item, so that the user cannot choose that menu item.
• You can enable a menu item that was formerly disabled.
• You can check a menu item (i.e., add a check-mark to the menu item); however, a menu item

must be defined as “checkable” when it is created. To define a menu item as checkable, insert
an exclamation point as the first character of the menu item name. For more information, see
Create Menu in the MapBasic Reference.

• You can un-check a menu item (i.e., remove the check-mark)
• You can rename the menu item, so that the text that appears on the menu changes.

To alter a menu item, use the Alter Menu Item statement. The Alter Menu Item statement includes
several optional clauses (Enable, Disable, Check, UnCheck, etc.); use whichever clauses apply to the
change you want to make.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 114 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
The sample program OverView demonstrates the process of creating, then altering, a custom menu.
The OverView application creates the following custom menu:

Create Menu ”OverView” As
 ”&Setup OverView” Calling OverView,
 ”(Suspend Tracking” Calling MenuToggler,
 ”(Pick Frame Style” Calling PickFrame,
 ”(-”,
 ”Close Overview” Calling Bye,
 ”(-”,
 ”About Overview...” Calling About

The Pick Frame Style menu item is initially disabled. (Whenever the name of a menu item begins with
the “(” character, that menu item is automatically disabled when the menu first appears.)

When and if the user sets up an overview window, the OverView application enables the Pick Frame
Style menu item, using the following statement:

Alter Menu Item PickFrame Enable

If the user closes the overview window, the application once again disables the Pick Frame menu item,
by issuing the following statement:

Alter Menu Item PickFrame Disable

PickFrame is the name of a sub-procedure in overview.mb. Note that PickFrame appears in both the
Create Menu statement (in the Calling clause) and in the Alter Menu Item statements. When you
issue an Alter Menu Item statement, you must specify which menu item you want to alter. If you
specify the name of a procedure (for example, PickFrame), MapInfo Professional modifies whatever
menu item calls that procedure.

Similarly, to enable the Suspend Tracking menu item, issue the following statement:

Alter Menu Item MenuToggler Enable

You also can use Alter Menu Item to change the name of a menu item. For example, the OverView
application has a menu item that is initially called Suspend Tracking. If the user chooses Suspend
Tracking, the application changes the menu item’s name to Resume Tracking by issuing the following
statement:

Alter Menu Item MenuToggler Text ”Resume Tracking”

Note that MapInfo Professional enables and disables its own standard menu items automatically,
depending on the circumstances. For example, the Window > New Map Window command is only
enabled when and if a mappable table is open. Because MapInfo Professional automatically alters its
own standard menu items, a MapBasic application should not attempt to enable or disable those menu
items.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 115 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Re-Defining The Menu Bar
To remove an entire menu from the menu bar, use the Alter Menu Bar statement. For example, the
following statement causes the Query menu to disappear:

Alter Menu Bar Remove ”Query”

You also can use Alter Menu Bar to add menus to the menu bar. For example, the following statement
adds both the Map menu and the Browse menu to the menu bar. (By default, those two menus never
appear on the menu bar at the same time. The Map menu ordinarily appears only when a Map is the
active window, and the Browse menu ordinarily appears only when a Browser window is active.)

Alter Menu Bar Add ”Map”, ”Browse”

The Alter Menu Bar Add statement always adds menus to the right end of the menu bar. One minor
disadvantage of this behavior is the fact that menus can end up located to the right of the Help menu.
Most software packages arrange the menu bar so that the last two menu names are Window and
Help. Therefore, you may want to insert your custom menu to the left of the Window menu. The
following statements show how to insert a menu to the left of the Window menu:

Alter Menu Bar Remove ID 6, ID 7
Alter Menu Bar Add ”Tools”, ID 6, ID 7

The first statement removes the Window menu (ID 6) and Help menu (ID 7) from the menu bar. The
second statement adds the Tools menu, the Window menu, and the Help menu to the menu bar. The
end result is that the Tools menu is placed to the left of the Window menu.

For complete control over the menu order, use the Create Menu Bar statement. For example, this
statement re-defines the menu bar to include the File, Edit, Map, Query, and Help menus (in that
order):

Create Menu Bar As ”File”, ”Edit”, ”Map”, ”Query”, ”Help”

For a list of MapInfo Professional’s standard menu names (“File”, “Query” etc.) see Alter Menu in the
MapBasic Reference or online Help. To restore MapInfo Professional’s standard menu definitions,
issue a Create Menu Bar As Default statement.

Specifying Language-Independent Menu References
Most of the preceding examples refer to menus by their names (for example, “File”). There is an
alternate syntax for referring to MapInfo Professional’s standard menus: you can identify standard
menus by ID numbers. For example, in any menu-related statement where you might refer to the File
menu as “File”, you could instead refer to that menu as ID 1. Thus, the following statement removes
the Query menu (which has ID number 3) from the menu bar:

Alter Menu Bar Remove ID 3

If your application will be used in more than one country, you may want to identify menus by their ID
numbers, rather than by their names. When the MapInfo Professional software is localized for non-
English speaking countries, the names of menus are changed. If your application tries to alter the “File”
menu, and you run your application on a non-English version of MapInfo Professional, your application
may generate an error (because in a non-English version of MapInfo Professional, “File” may not be
the name of the menu). For a listing of the ID numbers that correspond to MapInfo Professional’s
standard menus, see Alter Menu in the MapBasic Reference or online Help.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 116 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Customizing MapInfo Professional’s Shortcut Menus
MapInfo Professional 4.0 provides shortcut menus. These menus appear if the user clicks the right
mouse button. To manipulate shortcut menus, use the same statements you would use to manipulate
conventional menus: Alter Menu, Alter Menu Item, and Create Menu.

Each shortcut menu has a unique name and ID number. For example, the shortcut menu that appears
when you right-click a Map window is called “MapperShortcut” and has an ID of 17. For a listing of the
names and ID numbers of the shortcut menus, see Alter Menu in the MapBasic Reference or online
Help.

To destroy a shortcut menu, use the Create Menu statement to re-define the menu, and specify the
control code “(-” as the new menu definition. For example:

Create Menu ”MapperShortcut” ID 17 As ”(-”

Assigning One Handler Procedure To Multiple Menu Items
The Create Menu and Alter Menu statements provide an optional ID clause, which lets you assign a
unique ID number to each custom menu item you create. Menu item IDs are optional. However, if you
intend to have two or more menu items calling the same handler procedure, you will probably want to
assign a unique ID number to each of your custom menu items.

In situations where two or more menu items call the same handler procedure, the handler procedure
generally calls CommandInfo() to determine which item the user chose. For example, the following
statement creates two custom menu items that call the same handler:

Alter Menu ”Query” Add
 ”Annual Report” ID 201 Calling report_sub,
 ”Quarterly Report” ID 202 Calling report_sub

Both menu items call the procedure report_sub. Because each menu item has a unique ID, the handler
procedure can call CommandInfo() to detect which menu item the user chose, and act accordingly:

Sub report_sub
 If CommandInfo(CMD_INFO_MENUITEM) = 201 Then
 ’
 ’ ... then the user chose Annual Report...
 ’
 ElseIf CommandInfo(CMD_INFO_MENUITEM) = 202 Then
 ’
 ’ ... then the user chose Quarterly Report...
 ’
 End If
End Sub

Menu item IDs also give you more control when it comes to altering menu items. If an Alter Menu Item
statement identifies a menu item by the name of its handler procedure, MapBasic modifies all menu
items that call the same procedure. Thus, the following statement disables both of the custom menu
items defined above (which may not be the desired effect):

Alter Menu Item report_sub Disable
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 117 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Depending on the nature of your application, you may want to modify only one of the menu items. The
following statement disables only the Annual Report menu item, but has no effect on any other menu
items:

Alter Menu Item ID 201 Disable

Menu item ID numbers can be any positive Integer.

Simulating Menu Selections
To activate a MapInfo Professional command as if the user had chosen that menu item, use the Run
Menu Command statement. For example, the following statement displays MapInfo Professional’s
Open Table dialog, as if the user had chosen File > Open Table:

Run Menu Command M_FILE_OPEN

The code M_FILE_OPEN is defined in menu.def.

Defining Shortcut Keys And Hot Keys
Shortcut keys are keystroke combinations that let the user access menus and menu items directly from
the keyboard, without using the mouse. Typically, a shortcut key appears as an underlined letter in the
name of the menu or menu item. For example, in Windows, the shortcut keystroke to activate the
MapInfo Professional File menu is <Alt-F>, as indicated by the underlined letter, F. To assign a shortcut
key to a menu item, place an ampersand (&) directly before the character that you want to define as
the shortcut key.

The following program fragment shows how a MapBasic for Windows program defines the C key (in
Create Text Boxes) as a shortcut key. If this program runs on MapInfo Professional for Macintosh, the
ampersand is ignored.

Create Menu ”TextBox” As
 ”&Create Text Boxes...” Calling create_sub,
 ...

Hot keys are keystroke combinations that let the user execute menu commands without activating the
menu. Unlike shortcut keys that let you traverse through the menu structure using the keyboard, hot
keys let you avoid the menu completely. The following program fragment adds the hot key combination
<Control-Z> to a custom menu item:

Hot keys are keystroke combinations that let the user execute menu commands without activating the
menu. The following program fragment adds the hot key combination <Command-Z> to a custom
menu item:

Alter Menu ”Query” Add
 ”New Report” + Chr$(9) + ”CTRL-Z/W^%122” Calling new_sub

The instruction + Chr$(9) tells MapBasic to insert a tab character. The tab character is used for
formatting, so that all of the menu’s hotkey descriptions appear aligned.

The text CTRL-Z appears on the menu, so that the user can see the menu item has a hot key.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 118 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
The instruction /w^%122 defines the hot key as <Control-Z>. The code /w^%122 is a hot key code
recognized by MapInfo Professional: /w specifies that the code is for MapInfo Professional for
Windows, the caret (^) specifies that the user should hold down the Ctrl key, and the %122 specifies
the letter “z” (122 is the ASCII character code for z).

Alter Menu ”Query” Add
 ”New Report /Mz” Calling new_sub

The instruction /Mz defines the hot key as Command-Z. /M specifies that the code is for MapInfo
Professional for Macintosh, and z specifies the z key.

For a listing of codes that control menu hot keys, see Create Menu in the MapBasic Reference or
online Help.

Controlling Menus Through the MapInfo Professional Menus File
The default menu structure of MapInfo Professional is controlled by the MapInfo Professional menus
file. If you want to customize MapInfo Professional’s menu structure, you can do so by altering the
menus file.

With MapInfo Professional for Windows, the menus file is called MAPINFOW.MNU. With MapInfo
Professional for Macintosh, the menus file is called MapInfo menus.

Since the menus file is a text file, you can view it in any text editor. If you examine the menus file, you
will see that it bears a strong resemblance to a MapBasic program. If you change the menu definitions
in the menus file, the menus will look different the next time you run MapInfo Professional. In other
words, altering the menus file gives you a way of customizing the menu structure without using a
compiled MapBasic application.

WARNING: Before you make any changes to the menus file, make a backup of the file. If the menus
file is corrupted or destroyed, you will not be able to run MapInfo Professional (unless you can restore
the menus file from a backup). If you corrupt the menus file, and you cannot restore the file from a
backup, you will need to re-install MapInfo Professional.

The menus file contains several Create Menu statements. These statements define MapInfo
Professional’s standard menu definitions (File, Edit, etc.). If you wish to remove one or more menu
items from a menu, you can do so by removing appropriate lines from the appropriate Create Menu
statement.

For example, MapInfo Professional’s Table > Maintenance menu usually contains a Delete Table
command, as shown below.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 119 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
If you examine the menus file, you will see that the Maintenance menu is defined through a Create
Menu statement that looks like this:

Create Menu ”&Maintenance” As
 ”&Table Structure...” Calling 404,
 ”&Delete Table...” Calling 409,
 ”&Rename Table...” Calling 410,
 ”&Pack Table...” Calling 403,
 . . .

Because the Delete Table command is potentially dangerous, you might want to re-define the
Maintenance menu to eliminate Delete Table. To eliminate the Delete Table command from the menu,
remove the appropriate line (“&Delete Table...” Calling 409) from the menus file. After you make this
change, the Create Menu statement will look like this:

Create Menu ”&Maintenance” As
 ”&Table Structure...” Calling 404,
 ”&Rename Table...” Calling 410,
 ”&Pack Table...” Calling 403,
 . . .

The next time you run MapInfo Professional, the Table > Maintenance menu will appear without a
Delete Table item.

Similarly, if you wish to remove entire menus from the MapInfo Professional menu bar, you can do so
by editing the Create Menu Bar statement that appears in the menus file.

If MapInfo Professional is installed on a network, and you modify the menus file in the directory where
MapInfo Professional is installed, the changes will apply to all MapInfo Professional users on the
network. In some circumstances, you may want to create different menu structures for different
network users. For example, you may want to eliminate the Delete Table command from the menu that
appears for most of your users, but you may want that command to remain available to your network
system administrator.

To assign an individual user a customized menu structure, place a customized version of the menus
file in that user’s “home” directory. For Windows users, the home directory is defined as the user’s
private Windows directory (i.e., the directory where WIN.INI resides).

To assign an individual user a customized menu structure, place a customized version of the menus
file in that user’s “home” directory/folder. For Macintosh users, the home directory is defined as the
location of the user’s System folder. The menus file can be placed directly in the System folder, or in
the Preferences folder within the System folder.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 120 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
When a user runs MapInfo Professional, it checks to see if a copy of the menus file exists in the user’s
home directory. If a copy of the menus file is present in the user’s home directory, MapInfo Professional
loads that set of menus. If there is no menus file in the user’s home directory, MapInfo Professional
loads the menus file from the directory where it is installed.

Thus, if you want different users to see two different versions of the menu structure, create two
different versions of the menus file. Place the version that applies to most of your users in the directory
where MapInfo Professional is installed. Place the version that applies only to individual users in the
home directories of the individual users.

Standard Dialog Boxes

Dialog boxes are an essential element of the user interface. MapBasic provides several different
statements and functions that let you create dialogs for your application.

Displaying a Message
Use the Note statement to display a simple dialog box with a message and an OK button.

Asking a Yes-or-No Question
Use the Ask() function to display a dialog with a prompt and two buttons. The two buttons usually say
OK and Cancel, but you can customize them to suit your application. If the user chooses the OK
button, the function returns a TRUE value, otherwise, the function returns FALSE.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 121 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Selecting a File
Call the FileOpenDlg() function to display a standard File Open dialog. If the user chooses a file, the
function returns the name of the chosen file. If the user cancels out of the dialog, the function returns
an empty string.

The FileOpenDlg() function produces a dialog that looks like this:

The FileSaveAsDlg() function displays a standard File Save As dialog, and returns the file name
entered by the user.

Indicating the Percent Complete
Use the ProgressBar statement to display a standard percent-complete dialog, containing a progress
bar and a Cancel button.

Displaying One Row From a Table
MapInfo Professional does not provide a standard dialog that displays one row from a table. However,
you can use MapInfo Professional’s Info window to display a row. Instructions on managing the Info
window (and other windows as well) appear later in this chapter.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 122 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
For more information about the statements and functions listed above, see the MapBasic Reference. If
none of the preceding statements meets your needs, use the Dialog statement to create a custom
dialog, as described in the following section.

Custom Dialog Boxes

The Dialog statement lets you create custom dialogs. When you issue a Dialog statement, MapInfo
Professional displays the dialog and lets the user interact with the dialog. When the user dismisses the
dialog (for example, by clicking the OK or Cancel button), MapInfo Professional executes any
statements that follow the Dialog statement. After the Dialog statement, you can call the
CommandInfo() function to tell whether the user chose OK or Cancel.

Everything that can appear on a dialog is known as a control. For example, every OK button is a
control, and every Cancel button is also a control. To add controls to a dialog, include Control clauses
within the Dialog statement. For example, the following statement creates a dialog with four controls: a
label (known as a StaticText control); a box where the user can type (known as an EditText control); an
OK push-button (known as OKButton control) and a Cancel push-button (CancelButton control).

Dim s_searchfor As String

Dialog
 Title ”Search”
 Control StaticText
 Title ”Enter string to find:”
 Control EditText
 Into s_searchfor
 Control OKButton
 Control CancelButton
 Control CancelButton
 Control OKButton
If CommandInfo(CMD_INFO_DLG_OK) Then
 ’
 ’ ... then the user clicked OK -- in which case,
 ’ the String variable: s_searchfor will contain
 ’ the value entered by the user.
 ’
End If

This Dialog statement produces the following dialog:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 123 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Sizes and Positions of Controls
If you want to change the size of a dialog control, you can include the optional Width and Height
clauses within the Control clause. If you want to change the position of a dialog control, you can
include the optional Position clause.

For example, you might not like the default placement of the buttons in the dialog shown above. To
control the button placement, you could add Position clauses, as shown below:

Dialog
 Title ”Search”
 Control StaticText
 Title ”Enter string to find:”
 Control EditText
 Into s_searchfor

 Control OKButton
 Title ”Search”
 Position 30, 30

 Control CancelButton
 Position 90, 30

 Control CancelButton
 Position 80, 30

 Control OKButton
 Title ”Search”
 Position 120, 30

Because two of the Control clauses include Position clauses, the dialog’s appearance changes:

Positions and sizes are stated in terms of dialog units, where each dialog unit represents one quarter
of a character’s width or one eighth of a character’s height. The upper-left corner of the dialog has the
position 0, 0. The following Position clause specifies a position in the dialog five characters in from the
left edge of the dialog, and two characters from the top edge of the dialog:

Position 20, 16

A horizontal position of 20 specifies a position five characters to the right, since each dialog unit
represents one fourth of the width of a character. A vertical position of 16 specifies a position two
characters down, since each dialog unit spans one eighth of the height of a character.

You can include a Position clause for every control in the dialog. You also can specify Width and
Height clauses to customize a control’s size.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 124 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Control Types
The previous examples contained four types of controls (StaticText, EditText, OKButton, and
CancelButton). The following illustration shows all of MapBasic’s dialog control types.

StaticText is a non-interactive control that lets you include labels in the dialog box. For example:

Control StaticText
 Title ”Enter map title:”
 Position 5, 10

An EditText control is a boxed area where the user can type. For example:

Control EditText
 Value ”New Franchises, FY 95”
 Into s_title
 ID 1
 Position 65, 8 Width 90

A GroupBox control is a rectangle with a label at the upper left corner. Use GroupBoxes for visual
impact, to convey that other dialog controls are related. For example:

Control GroupBox
 Title ”Level of Detail”
 Position 5, 30 Width 70 Height 40

A RadioGroup control is a set of “radio buttons” (i.e., a list of choices where MapBasic only allows the
user to select one of the buttons at a time). For example:

Control RadioGroup
 Title ”&Full Details;&Partial Details”
 Value 2
 Into i_details
 ID 2
 Position 12, 42 Width 60

StaticText

GroupBox

RadioGroup

ListBox

PopupMenu

Button

EditText

Picker
(SymbolPicker)

MultiListBox

CheckBox

OKButton

CancelButton
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 125 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
There are four types of Picker controls: PenPicker, BrushPicker, FontPicker, and SymbolPicker.
Each Picker control lets the user select a graphical style (line, fill, font, or symbol). The illustration
shown above includes a SymbolPicker control, showing a star-shaped symbol. For example:

Control SymbolPicker
 Position 95, 45
 Into sym_variable ID 3

A ListBox control is a scrollable list from which the user can select one item. MapBasic automatically
appends a vertical scroll bar to the right edge of the ListBox if there are too many list items to be
displayed at one time. For example:

Control ListBox
 Title ”First Qrtr;2nd Qrtr;3rd Qrtr;4th Qrtr”
 Value 4
 Into i_quarter
 ID 4
 Position 5, 90 Width 65 Height 35

A MultiListBox is similar to a ListBox, except that the user can shift-click or control-click to select two
or more items from the list. For example:

Control MultiListBox
 Title ”Streets;Highways;Towns;Counties;States”
 Value 3
 ID 5
 Position 95, 90 Width 65 Height 35

A PopupMenu appears as a text item with a down arrow at the right edge. As the user clicks on the
control, a menu pops up, allowing the user to make a selection. For example:

Control PopupMenu
 Title ”Town;County;Territory;Entire state”
 Value 2
 Into i_scope
 ID 6
 Position 5, 140

A CheckBox is a label with a box. The user can check or clear the box by clicking on the control. For
example:

Control CheckBox
 Title ”Include &Legend”
 Into l_showlegend
 ID 7
 Position 95, 140
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 126 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Button controls are perhaps the most common type of control that you will use, since almost every
dialog box has at least one button. MapBasic provides special control types OKButton and
CancelButton for creating OK and Cancel buttons.

Control Button
 Title ”&Reset”
 Calling reset_sub
 Position 10, 165

Control OKButton
 Position 65, 165
 Calling ok_sub

Control CancelButton
 Position 120, 165

Each dialog should have no more than one OKButton or CancelButton control. Both controls are
optional. However, as a general rule, every dialog should have an OK and/or a Cancel button, so that
the user has a way of dismissing the dialog. If either control has a handler, MapBasic executes the
handler procedure and then resumes executing the statements that follow the Dialog statement.

Every type of control is described in detail in the MapBasic Reference and online Help. For example, to
read about ListBox controls, see Control Listbox.

Specifying a Control’s Initial Value
Most types of controls have an optional Value clause. This clause specifies how the control is set when
the dialog first appears. For example, if you want the fourth item in a ListBox control to be selected
when the dialog first appears, add a Value clause to the ListBox clause:

Value 4

If you omit the Value clause, MapInfo Professional uses a default value. For example, CheckBox
controls are checked by default. For more information about setting a Value clause, see the
appropriate Control description (for example, Control CheckBox) in the MapBasic Reference.

Reading a Control’s Final Value
Most types of controls allow an optional Into clause. This clause associates a program variable with
the control, so that MapInfo Professional can store the dialog data in the variable. If you create a
control with an Into clause, and if the user terminates the dialog by clicking the OK button, MapInfo
Professional stores the control’s final value in the variable.

The Into clause must name a local or global variable in your program. The variable that you specify
must be appropriate for the type of control. For example, with a CheckBox control, the variable must be
Logical (TRUE meaning checked, FALSE meaning clear). See the MapBasic Reference for more
information about the type of variable appropriate for each control.

Note: MapInfo Professional only updates the Into variable(s) after the dialog terminates, and only if
the dialog terminates because the user clicked OK. If you need to read the value of a control
from within a dialog handler procedure, call the ReadControlValue() function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 127 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Responding to User Actions by Calling a Handler Procedure
Most types of controls can have handlers. A handler is a sub-procedure that MapBasic calls
automatically when and if the user clicks that control. The optional Calling handler clause specifies a
control’s handler; handler must be the name of a sub-procedure that takes no parameters. When the
user clicks on a control that has a handler procedure, MapBasic calls the procedure. When the
procedure finishes, the user can continue interacting with a dialog (except in the case of OKButton and
CancelButton controls, which automatically dismiss the dialog).

Handler procedures allow your program to issue statements while the dialog is on the screen. For
example, you may want your dialog to contain a “Reset” button. If the user clicks on the Reset button,
your program will reset all controls in the dialog to their default values. To create such a dialog, you
would need to assign a handler procedure to the “Reset” Button control. Within the handler procedure,
you would issue Alter Control statements to reset the dialog’s controls.

A ListBox or MultiListBox control handler can be set up to respond one way to single-click events
while responding differently to double-click events. The handler procedure can call the
CommandInfo(CMD_INFO_DLG_DBL) function to determine whether the event was a single- or
double-click. For an example of this feature, see the Named Views sample program (nviews.mb). The
Named Views dialog presents a list of names; if the user double-clicks on a name in the list, the
handler procedure detects that there was a double-click event, and dismisses the dialog. In other
words, the user can double-click on the list, rather than single-clicking on the list and then clicking on
the OKButton.

If two or more controls specify the same procedure name in the Calling clause, the named procedure
acts as the handler for both of the controls. Within the handler procedure, call the TriggerControl()
function to determine the ID of the control that was used.

Most dialog controls can have handler procedures (only GroupBox, StaticText, and EditText controls
cannot have handlers). You also can specify a special handler procedure that is called once when the
dialog first appears. If your Dialog statement includes a Calling clause that is not part of a Control
clause, the Calling clause assigns a handler procedure to the dialog itself.

The Alter Control statement may only be issued from within a handler procedure. Use Alter Control
to disable, enable, show, hide, rename, or reset the current setting of a control. The Alter Control
statement can also set which EditText control has the focus (i.e., which control is active). For more
information, see Alter Control in the MapBasic Reference or online Help.

Enabled / Disabled Controls
When a control first appears, it is either enabled (clickable) or disabled (grayed out). By default, every
control is enabled. There are two ways to disable a dialog control:

• Include the optional Disable keyword within the Dialog statement’s Control clause. When the
dialog appears, the control is disabled.

• From within a handler procedure, issue an Alter Control statement to disable the control. If
you want the control to be disabled as soon as the dialog appears, assign a handler procedure
to the dialog itself, by including a Calling clause that is not within a Control clause. This
handler will be called once, when the dialog first appears. Within the handler, you can issue
Alter Control statements. This technique is more involved, but it is also more flexible. For
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 128 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
example, if you want a control to be disabled, but only under certain conditions, you can place
the Alter Control statement within an If...Then statement.

Note: If you are going to use an Alter Control statement to modify a dialog control, you should
assign an ID number to the control by including an ID clause in the Dialog statement. For an
example, see Alter Control in the MapBasic Reference or online Help.

Letting the User Choose From a List
The ListBox control presents a list of choices. There are two ways you can specify the list of items that
should appear in a ListBox control:

• Build a String expression that contains all of the items in the list, separated by semicolons. For
example:

Control ListBox
 Title ”First Qrtr;2nd Qrtr;3rd Qrtr;4th Qrtr;Year in Review”

• Declare an array of String variables, and store each list item in one element of the array. In the
Control clause, specify the keywords From Variable. For example, if you have created a
String array called s_list, you could display the array in a ListBox control using this syntax:

Control ListBox
 Title From Variable s_list

You can use the From Variable syntax in all three of MapBasic’s list controls (ListBox, MultiListBox,
and PopupMenu).

Managing MultiListBox Controls
If your dialog contains a MultiListBox control, you must use a handler procedure to determine what list
item(s) the user selected from the list. In most cases, a dialog with a MultiListBox control contains an
OKButton control with a handler procedure. The OKButton’s handler procedure calls the
ReadControlValue() function within a loop. The first ReadControlValue() call returns the number of
the first selected list item; the next call returns the number of the next selected list item; etc. When
ReadControlValue() returns zero, the list of selected items has been exhausted. If
ReadControlValue() returns zero the first time you call it, none of the list items are selected.

Within a handler procedure, you can de-select all items in a MultiListBox control by issuing an Alter
Control statement, and assigning a value of zero to the control. To add a list item to the set of selected
items, issue an Alter Control statement with a positive, non-zero value. For example, to select the first
and second items in a MultiListBox control, you could issue the following statements:

Alter Control 1 Value 1
Alter Control 1 Value 2

Note that both the ReadControlValue() function and the Alter Control statement require a control ID.
To assign a control ID to a MultiListBox control, include the optional ID clause in the Control
MultilistBox clause.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 129 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Specifying Shortcut Keys for Controls
When a MapBasic application runs on MapInfo Professional for Windows, the application dialogs can
assign shortcut keys to the various controls. A shortcut key is a convenience that lets the user activate
a dialog control using the keyboard instead of the mouse.

To specify a shortcut key for a control, include the ampersand character (&) in the control’s title
immediately before the character that is to be used as a shortcut key character. For example, the
following Control clause creates a Button control with R as the shortcut key:

Control Button
 Title ”&Reset”
 Calling reset_sub

Because an ampersand appears in the Button control’s title, the user is able to activate the Reset
button by pressing Alt-R. If you want to display an ampersand character in a control, use two
successive ampersand characters (&&).

You cannot specify a shortcut key for an EditText control. However, if you place a StaticText label to the
left of an EditText control, and you specify a shortcut key for the StaticText label, the user can set the
focus on the EditText control by pressing the shortcut key of the StaticText label.

Dialog shortcut key designations are ignored when a MapBasic application runs in any operating
environment other than Windows.

Modal vs. Modeless Dialog Boxes
The Dialog statement creates a modal dialog box. In other words, the user must dismiss the dialog box
(for example, by clicking OK or Cancel) before doing anything else with MapInfo Professional.

Some dialog boxes are modeless, meaning that the dialog can remain on the screen while the user
performs other actions. For example, MapInfo Professional’s Image Registration dialog box is
modeless. The Dialog statement cannot create modeless dialog boxes. If you want to create modeless
dialog boxes, you may need to develop an application in another programming environment, such as
Microsoft Visual Basic, and call that application from within your MapBasic program (for example, using
the Run Program statement).

Terminating a Dialog Box
After a MapBasic program issues a Dialog statement, it will continue to be displayed until one of four
things happens:

• The user clicks the dialog’s OKButton control (if the dialog has one).
• The user clicks the dialog’s CancelButton control (if the dialog has one).
• The user otherwise cancels the dialog (for example, by pressing the Escape key).
• The user clicks a control that has an associated handler procedure that issues a Dialog

Remove statement.

Ordinarily, a dialog terminates when the user clicks an OKButton or CancelButton control. There are
times when the user should be allowed to continue using a dialog after pressing OK or Cancel. For
example, in some dialogs if the user presses Cancel, the application asks the user to verify the
cancellation (Are you sure you want to lose your changes?). If the user’s response is No, the
application should resume using the original dialog.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 130 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
The Dialog Preserve statement lets you allow the user to continue using a dialog after the OKButton
or CancelButton is clicked. You can only issue a Dialog Preserve statement from within the handler
sub-procedure of either the OKButton or CancelButton control.

The Dialog Remove statement halts a dialog prematurely. When a control’s handler procedure issues
a Dialog Remove statement, the dialog halts immediately. Dialog Remove is only valid from within a
dialog control’s handler procedure. Dialog Remove can be used, for instance, to terminate a dialog
when the user double-clicks a ListBox control. The Named Views sample program (NVIEWS.MB)
provides an example of allowing the user to double-click in a list.

Windows

A MapBasic application can open and manipulate any of MapInfo Professional’s standard window
types (Map windows, Browse windows, etc.).

To open a new document window, issue one of these statements: Map, Browse, Graph, Layout, or
Create Redistricter. Each document window displays data from a table, so you must have the proper
table(s) open before you open the window.

To open one of MapInfo Professional’s other windows (for example, the Help window or the Statistics
window), use the Open Window statement.

Many window settings can be controlled through the Set Window statement. For example, you could
use the Set Window statement to set a window’s size or position. There are also other statements that
let you configure attributes of specific window types. For example, to control the order of layers in a
Map window, you would issue a Set Map statement. To control the display of a grid in a Browse
window, you would issue a Set Browse statement.

Each document window (Map, Browser, Layout, Graph, or Redistrict) has an Integer identifier, or
window ID. Various statements and functions require a window ID as a parameter. For example, if two
or more Map windows are open, and you want to issue a Set Map statement to modify the window, you
should specify a window ID so that MapInfo Professional knows which window to modify.

To obtain the window ID of the active window, call the FrontWindow() function. Note that when you
first open a window (for example, by issuing a Map statement), that new window is the active window.
For example, the OverView sample program issues a Map statement to open a Map window, and then
immediately calls the FrontWindow() function to record the ID of the new Map window. Subsequent
operations performed by the OverView application refer to the ID.

Note: A window ID is not a simple, ordinal number, such as 1, 2, etc. The number 1 (one) is not a
valid window ID. To obtain a window ID, you must call a function such as FrontWindow() or
WindowID(). For example, to obtain the window ID of the first window that is open, call
WindowID(1). To determine the number of open windows, call NumWindows().

The WindowInfo() function returns information about an open window. For example, if you want to
determine whether the active window is a Map window, you can call FrontWindow() to determine the
active window’s ID, and then call WindowInfo() to determine the active window’s window type.

To close a window, issue a Close Window statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 131 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Specifying a Window’s Size and Position
There are two ways to control a window’s size and position:

• Include the optional Position, Width, and Height clauses in the statement that opens the
window. For example, the following Map statement not only opens a Map window, it also
specifies the window’s initial size and position:
 Map From world

 Position (2,1) Units ”in”
 Height 3 Units ”in”
 Width 4 Units ”in”

• Issue a Set Window statement to control a window’s size or position after the window is open.
Note that the Set Window statement requires an Integer window ID.

Map Windows
A Map window displays mappable objects from one or more tables. When opening a Map window, you
must specify the tables that you want to display; each table must already be open.

The following statement opens a Map window:

 Map From world, worldcap, grid30

This example maps the objects from the World, Worldcap, and Grid30 tables.

To add layers to a Map window, issue an Add Map Layer statement. To remove map layers from a
Map window, issue a Remove Map Layer statement. If you want to temporarily hide a map layer, you
do not need to remove it from the map; instead, you can use the Set Map statement to set that layer’s
Display attribute to off.

The Set Map statement is a very powerful statement that can control many aspects of a Map window.
By issuing Set Map statements, your program can control map attributes that the user would control
through the Map > Layer Control and Map > Options commands. For more information, see Set Map in
the MapBasic Reference.

Use the Shade statement to create a thematic map (a map that uses color coding or other graphical
devices to display information about the data attached to the map). The Shade statement lets you
create the following of MapInfo Professional’s styles of thematic maps: ranges, bar charts, pie charts,
graduated symbols, dot density, or individual values. When you create a thematic map, MapInfo
Professional adds a thematic layer to the affected window. To modify a thematic map, use the Set
Shade statement.

As of version 5.0 use the Create Grid Statement to create an important new thematic type that enables
analysis unconstrained by pre-existing geographic boundaries. Surface themes provide a continuous
color visualization for point data sets that you previously looked at as a point thematic or graduated
symbol. An inverse distance weighted interpolator populates the surface values from your MapInfo
Professional point table. This powerful new thematic can be used in many industries like telco, retail
analysis, insurance, traditional GIS areas, and many more. This new theme and grid format is
supported by open APIs for additional grid formats and interpolators which allows customization by our
developer community. Refer to the Create Grid statement in the MapBasic Reference. To modify a
surface thematic, use the Inflect clause of the Set Map statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 132 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
To change a Map window’s projection, you can issue a Set Map statement with a CoordSys clause.
Alternately, you can display a map in a specific projection by saving your table(s) in a specific
projection (using the Commit Table ... As statement).

To control whether scroll bars appear on a Map window, issue a Set Window statement.

Using Animation Layers to Speed Up Map Redraws
If the Add Map Layer statement includes the Animate keyword, the layer becomes a special layer
known as the animation layer. When an object in the animation layer is moved, the Map window
redraws very quickly, even if the map is very complex.

The animation layer is useful in realtime applications, where map features are updated frequently. For
example, you can develop a fleet-management application that represents each vehicle as a point
object. You can receive current vehicle coordinates by using GPS (Global Positioning Satellite)
technology, and then update the point objects to show the current vehicle locations on the map. In this
type of application, where map objects are constantly changing, the map redraws much more quickly if
the objects being updated are stored in the animation layer instead of a conventional layer.

The following example opens a table and makes the table an animation layer:

 Open Table ”vehicles” Interactive
 Add Map Layer vehicles Animate

Animation layers have the following restrictions:

• When you add an animation layer, it does not appear in the Layer Control dialog box.
• The user cannot interact with the animation layer by clicking in the Map window. For example,

the user cannot use the Info tool to click on a point in the animation layer.
• Each Map window can have only one animation layer. The animation layer automatically

becomes the map’s top layer. If you attempt to add an animation layer to a Map window that
already has an animation layer, the new animation layer replaces the old one.

• Workspace files do not preserve information about animation layers.
• To terminate the animation layer processing, issue a Remove Map Layer Animate statement.

Sample Program
To see a demonstration of animation layers, run the sample program ANIMATOR.MBX.

Performance Tips for Animation Layers
The purpose of the animation layer feature is to allow fast updates to small sections of the Map
window. To get the best redraw speed possible:

• Avoid displaying the Map window in a Layout window. If the Map window that has the
animation layer is displayed in a Layout window, screen updates may not be as fast.

• Make sure that the layer you are using as an animation layer is only displayed once in the Map
window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 133 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
For example, suppose you are working with two tables: Roads (a table containing a street map), and
Trucks (a table containing point objects, each of which represents a delivery truck). Suppose your Map
window already contains both layers. If you want to turn the Trucks layer into an animation layer, you
need to issue the following statement:

 Add Map Layer Trucks Animate

However, you now have a problem: the Trucks layer now appears in the Map window twice-once as a
conventional map layer, and once as an animation layer. Because the Trucks layer is still being
displayed as a conventional layer, MapInfo Professional will not be able to perform fast screen
updates. In other words, updates to the Map window will redraw as slowly as before, which defeats the
purpose of the animation layer feature.

The following example demonstrates how to handle this situation. Before you add the Trucks layer as
an animation layer, turn off the display of the “conventional” Trucks layer:

 ’temporarily prevent screen updates
 Set Event Processing Off

 ’set the original Trucks layer so it won’t display
 Set Map Layer ”Trucks” Display Off

 ’add the Trucks layer to the map, as an animation layer
 Add Map Layer Trucks Animate

 ’ allow screen updates again
 Set Event Processing On

 ’ At this point, there are two Trucks layers in the
 ’ Map window. However, the ”conventional” Trucks layer
 ’ is not displayed, so it will not slow down the display
 ’ of the ”animated” Trucks layer.

Browser Windows
A Browser window displays columns of table data. The following statement opens a simple Browser
window that displays all the columns in the World table:

Browse * From world

The asterisk specifies that every column in the table should appear in the Browser. To open a Browser
window that displays only some of the columns, replace the asterisk with a list of column expressions.
For example, the following statement opens a Browser window that shows only two columns:

Browse country, capital From world

The Browse statement can specify column expressions that calculate derived values. For example,
the following statement uses the Format$() function to create a formatted version of the World table’s
Population column. As a result, the second column in the Browser will contain commas to make the
population statistics more readable.

Browse country, Format$(Population, ”,#”) From world
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 134 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
If the Browse statement specifies a simple column name (for example, country), the Browser window
allows the user to edit the column values (unless the table is read-only). However, if the Browse
statement specifies an expression that is more complex than just a column name, the corresponding
column in the Browser window is read-only. Thus, if you want to create read-only columns in a Browser
window, you can do so by browsing an expression, rather than a simple column name.

The expressions that you specify in the Browse statement appear as column headers across the top
of the Browser window. The following statement shows how you can override the default column
expression with an alias column header:

Browse country, Format$(Population, ”,#”) ”Pop” From world

Because the String expression “Pop” appears after the column expression, “Pop” will be the column
header that appears on the Browser window.

You can also set the initial default position of the Browser window. The following example positions the
initial display so that the second column of the fifth row is in the upper left position of the Browser
display:

Browse * From world Row 5 Column 2

Graph Windows
A Graph window contains a graph containing labels and values computed from a table. This sample
displays a graph using one column for labels and another for data:

Graph country, population From world

The first item after the keyword Graph is the name of the column that provides labels for the data.
Each following item is an expression that provides the graph with data. The example above is a simple
expression in which the data is one column of the table. You can use any valid numeric expression.

Layout Windows
A Layout window represents a page layout. To open a Layout window, use the Layout statement.

Most Layout windows contain one or more frame objects. To create a frame object, issue a Create
Frame statement. Layout windows also can contain any type of Map object. For example, to place a
title on the page layout, create a text object by issuing a Create Text statement.

A Layout window can be treated as a table. For example, you can add objects to a Layout by issuing
an Insert statement that refers to a table name such as “Layout1.” However, strictly speaking, the
objects that appear on a layout are not saved in table format (although they are saved in workspace
files). For more information on accessing a Layout window as if it were a table, see Chapter 8:
Working With Tables.

Objects stored on Layout windows must use a Layout coordinate system, which defines object
coordinates in terms of “paper” units such as inches or millimeters. For more information on Layout
coordinates, see Chapter 10: Graphical Objects.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 135 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Redistrict Windows
Use the Create Redistricter statement to begin a redistricting session. The Create Redistricter
statement lets your program control all redistricting options that the user might configure through the
Window > New Redistrict Window dialog.

Once a redistricting session has begun, you can control the Districts Browser by issuing Set
Redistricter statements. To perform actions from the Redistrict menu, use the Run Menu Command
statement.

For example, to assign objects to a district (as if the user had chosen Redistrict > Assign Selected
Objects), issue the following statement:

 Run Menu Command M_REDISTRICT_ASSIGN

To end a redistricting session, close the Districts Browser by issuing a Close Window statement. Note
that values in the base table change as objects are re-assigned from district to district. After a
redistricting session, you must save the base table if you want to retain the map objects’ final district
assignments. To save a table, issue a Commit statement.

For more information about redistricting, see the MapInfo Professional documentation.

Message Window
You can use MapBasic’s Print statement to print text to the Message window. For example, the
following statement prints a message to the Message window:

 Print ”Dispatcher is now on line.”

Customizing the Info Window

The Info window displays a row from a table. The user can edit a row by typing into the Info window. To
control and customize the Info window, use the Set Window statement. The following picture shows a
customized Info window:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 136 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
The following program creates the customized Info window shown above.

Include ”mapbasic.def”
Open Table ”World” Interactive

Select
 Country, Capital, Inflat_Rate + 0 ”Inflation”
 From World
 Into World_Query

Set Window Info
 Title ”Country Data”
 Table World_Query Rec 1
 Font MakeFont(”Arial”, 1, 10, BLACK, WHITE)
 Width 3 Units ”in” Height 1.2 Units ”in”
 Position (2.5, 1.5) Units ”in”
 Front

Note the following points about this example:

• Ordinarily, the Info window’s title bar reads “Info Tool.” This program uses the Title clause to
make the title bar read “Country Data.”

• To specify which row of data appears in the window, use the Set Window statement’s Table ...
Rec clause. The example above displays record number 1 from the World_Query table.
(World_Query is a temporary table produced by the Select statement.)

• The Info window displays a box for each field in the record; the scroll-bar at the right edge of
the window allows the user to scroll down through the fields. To limit the number of fields
displayed, the example above uses a Select statement to build a temporary query table,
World_Query. The World_Query table has only three columns; as a result, the Info window
displays only three fields.

To make some, but not all, of the fields in the Info window read-only:

1. Use a Select statement to produce a temporary query table.
2. Set up the Select statement so that it calculates expressions instead of simple column values.

The Select statement shown above specifies the expression “Inflat_Rate + 0” for the third
column value. (The “Inflation” string that follows the expression is an alias for the expression.)

 Select
 Country, Capital, Inflat_Rate + 0 ”Inflation”

3. In the Set Window Info statement, use the Table... Rec clause to specify which record is
displayed. Specify a row from the query table, as in the example above. When a column in the
query table is defined with an expression, the corresponding box in the Info window is read-
only. (In the example above, the Inflation field is read-only.)

4. When the user types a new value into the Info window, MapInfo Professional automatically
stores the new value in the temporary query table, and in the base table on which the query
was based. You do not need to issue additional statements to apply the edit to the table.
(However, you do need to issue a Commit statement if you want to save the user’s edits.)

To make all fields in the Info window read-only, issue the following statement:

Set Window Info ReadOnly

Note: All of the fields in the Info window are read-only when you display a table that is a join (such as
a StreetInfo table) or a query table that uses the Group By clause to calculate aggregate
values.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 137 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
ButtonPads (Toolbars)

A ButtonPad is a resizable, floating window which contains one or more buttons. The user can initiate
various types of actions by choosing buttons from a ButtonPad.

The terms “ButtonPad” and “toolbar” mean exactly the same thing. The MapInfo Professional user
interface refers to toolbars. For example, MapInfo Professional’s Options menu has a Toolbars
command, which lets the MapInfo Professional user show or hide toolbars. Meanwhile, the MapBasic
language syntax refers to toolbars as ButtonPads. For example, use the Alter ButtonPad statement to
show or hide a toolbar.

MapInfo Professional provides several standard ButtonPads, such as the Main ButtonPad. A
MapBasic program can add custom buttons to existing ButtonPads, or create entirely new ButtonPads.

What Happens When The User Chooses A Button?
Like menu items, custom buttons have handler procedures. When a user works with a custom button,
MapBasic automatically calls that button’s handler procedure. Thus, if you want MapBasic to display a
custom dialog each time the user clicks on a button, create a sub procedure which displays the dialog,
and make that procedure the handler for the custom button.

A MapBasic program can create three different types of buttons: ToolButtons, ToggleButtons, and
PushButtons. The button type dictates the conditions under which MapBasic calls that button’s handler.

• PushButton: When the user clicks on a PushButton, the button springs back up, and
MapBasic calls the PushButton’s handler procedure.
The Layer Control button is an example of a PushButton. Clicking on the Layer Control button
has an immediate effect (a dialog displays), but there is no lasting change to the status of the
button.

• ToggleButton: When the user clicks on a ToggleButton, the button toggles between being
checked (pushed in) and being unchecked (not pushed in). MapBasic calls the button’s
handler procedure each time the user clicks on the ToggleButton.
The Show/Hide Legend Window button is an example of a ToggleButton. Clicking on the
button has an immediate effect: showing or hiding the Legend Window. Furthermore, there is a
lasting change to the button’s status: the button toggles in or out.

• ToolButton: When the user clicks on a ToolButton, that button becomes the active tool, and
remains the active tool until the user chooses a different tool. MapBasic calls the button’s
handler procedure if the user clicks in a Map, Browse, or Layout window while the custom
button is the selected tool.
The Magnify tool is an example of a ToolButton. Choosing the tool does not produce any
immediate effects; however, choosing the tool and then clicking in a Map window does have an
effect.

MapBasic Statements Related To ButtonPads
The following statements and functions let you create and control custom buttons and ButtonPads:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 138 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Create ButtonPad
This statement creates a new ButtonPad.

Alter ButtonPad
After creating a custom ButtonPad, your program can alter various attributes of the ButtonPad. The
Alter ButtonPad statement lets you reposition, show, or hide a ButtonPad, or add or remove buttons
to or from a ButtonPad.

The Alter ButtonPad statement lets you modify any ButtonPad, even standard pads, such as Main. If
your application needs only one or two custom buttons, you may want to add those buttons to the
standard Main ButtonPad, instead of creating a new ButtonPad.

Alter Button
This statement modifies the status of a single button. Use the Alter Button statement to disable (de-
activate) or enable (activate) a button, or to change which button is currently selected.

CommandInfo()
Use the CommandInfo() function within a button’s handler procedure to query information about how
the user has used the custom button. For example, if the user chooses a ToolButton and then clicks in
a Map window, the CommandInfo() function can read the x- and y-coordinates of the location where
the user clicked.

If you create two or more buttons that call the same handler procedure, that procedure can call
CommandInfo(CMD_INFO_TOOLBTN) to determine which button is in use.

Thus, within a button’s handler procedure, you might call CommandInfo() several times: Once to
determine which button the user has chosen; once to determine the x-coordinate of the location where
the user clicked; once to determine the y-coordinate; and once to determine whether or not the user
held down the shift key while clicking.

ToolHandler
ToolHandler, a special procedure name, gives you an easy way to add one button to the Main
ButtonPad. If your MapBasic program includes a procedure named ToolHandler, MapBasic
automatically adds one ToolButton to the Main ButtonPad. Then, if the user chooses the ToolButton,
MapBasic automatically calls the ToolHandler procedure each time the user clicks in a Map, Browse, or
Layout window.

A MapBasic program cannot customize the button icon or draw mode associated with the ToolHandler
procedure; the icon and cursor always use a simple + shape. If you need to specify a custom icon or
cursor, use the Create ButtonPad or Alter ButtonPad statement instead of a ToolHandler procedure.

If the user runs multiple MapBasic applications at one time, and each application has its own
ToolHandler, each application adds its own button to the Main ButtonPad.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 139 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Creating A Custom PushButton
The following program creates a custom ButtonPad containing a PushButton. The button_prompt
procedure is the button’s handler; therefore, whenever the user clicks the custom PushButton,
MapBasic automatically calls the button_prompt procedure.

Include ”icons.def”
Declare Sub Main
Declare Sub button_prompt

Sub Main
 Create ButtonPad ”Custom” As
 PushButton
 Icon MI_ICON_ZOOM_QUESTION
 Calling button_prompt
 HelpMsg ”Displays the query dialog\nQuery”
 Show
End Sub

Sub button_prompt
 ’ This procedure called automatically when
 ’ the user chooses the button.
 ’ ...
End Sub

The Main procedure contains only one statement: Create ButtonPad. This statement creates a
custom ButtonPad, called “Custom,” and creates one custom button on the ButtonPad.

The PushButton keyword tells MapBasic to make the custom button a PushButton.

The Icon clause tells MapBasic which icon to display on the custom button. The identifier,
MI_ICON_ZOOM_QUESTION, is defined in the file icons.def. To see a list of standard MapInfo
Professional icon identifiers, examine icons.def.

The Calling clause tells MapBasic to call the button_prompt procedure whenever the user clicks on
the custom button.

The HelpMsg clause defines both a status bar help message and a ToolTip help message for the
button. Help messages are discussed later in this chapter.

Adding A Button To The Main ButtonPad
The preceding example used the Create ButtonPad statement to create an all-new ButtonPad.
MapBasic can also add custom buttons to MapInfo Professional’s default ButtonPads, such as Main.
To add a button to an existing ButtonPad, use the Alter ButtonPad statement, instead of the Create
ButtonPad statement, as shown in the following example:

 Alter ButtonPad ”Main”
 Add Separator
 Add PushButton
 Icon MI_ICON_ZOOM_QUESTION
 Calling button_prompt
 HelpMsg ”Displays the query dialog\nQuery”
 Show
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 140 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
The Add PushButton clause adds a custom button to the Main ButtonPad, while the Add Separator
clause places an empty space between the new button and the previous button. The Add Separator
clause is optional; use it when you want to separate buttons into distinct groups.

MapInfo Professional includes a special ButtonPad, called Tools, so that MapBasic utility programs will
have a place where they can add custom buttons. For example, the ScaleBar utility adds its button to
the Tools ButtonPad.

Creating A Custom ToolButton
The preceding examples created custom PushButtons. MapBasic also can create custom ToolButtons,
which act like MapInfo Professional tools, such as the Magnify and Line tools. If a program creates a
custom ToolButton, the user can choose that tool, then use that tool to click, and sometimes drag, on a
Map, Browse, or Layout window.

The following example creates a custom ToolButton. After selecting the tool, the user can click and
drag in a Map window. As the user drags the mouse, MapInfo Professional displays a dynamically-
changing line connecting the current cursor position to the location where the user clicked.

Include ”icons.def”
Include ”mapbasic.def”
Declare Sub Main
Declare Sub draw_via_button

Sub Main
 Create ButtonPad ”Custom” As
 ToolButton
 Icon MI_ICON_LINE
 DrawMode DM_CUSTOM_LINE
 Cursor MI_CURSOR_CROSSHAIR
 Calling draw_via_button
 HelpMsg ”Draws a line on a Map window\nDraw Line”
 Show
End Sub
Sub draw_via_button
 Dim x1, y1,x2, y2 As Float
 If WindowInfo(FrontWindow(),WIN_INFO_TYPE) <> WIN_MAPPER Then
 Note ”This tool may only be used on a Map window. Sorry!”
 Exit Sub
 End If

’ Determine map location where user clicked:
 x1 = CommandInfo(CMD_INFO_X)
 y1 = CommandInfo(CMD_INFO_Y)
 x2 = CommandInfo(CMD_INFO_X2)
 y2 = CommandInfo(CMD_INFO_Y2)

’ Here, you could create objects based on x1, y1, x2, and y2.
End Sub

In this example, the Create ButtonPad statement includes the ToolButton keyword instead of the
PushButton keyword. This tells MapBasic to make the custom button act like a drawing tool.

The button definition includes a DrawMode clause, which tells MapBasic whether the user can drag
after clicking with the tool. The example above uses the DM_CUSTOM_LINE drawing mode; therefore,
the user is able to click and drag with the custom tool, just as you can click and drag when using
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 141 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
MapInfo Professional’s standard Line tool. When a tool uses the DM_CUSTOM_POINT mode, the
user cannot drag after clicking. For a listing of all available drawing modes, see Alter ButtonPad in the
MapBasic Reference or online Help.

The DrawMode also controls what the user sees while dragging. With the DM_CUSTOM_LINE mode,
MapBasic draws a line between the cursor location and the point where the user first clicked. With the
DM_CUSTOM_RECT mode, MapBasic draws a rectangular marquee while the user drags the mouse.
Regardless of which DrawMode is used with a ToolButton, MapInfo Professional calls the button’s
handler procedure after the user clicks and releases the mouse button. The handler procedure can call
CommandInfo() to determine where the user clicked. Note: If the user cancels the operation by
pressing the Esc key, MapInfo Professional does not call the handler procedure.

Choosing Icons for Custom Buttons
When you define a custom button, you control the icon that appears on the button. To specify which
icon you want to use, use the Icon clause.

The keyword Icon is followed by a code from ICONS.DEF. For example, the following statement
defines a custom button that uses the icon for MapInfo Professional’s Info button. The code
MI_ICON_INFO is defined in ICONS.DEF.

 Alter ButtonPad ”Main”
 Add Separator
 Add PushButton
 Icon MI_ICON_INFO
 Calling procedure_name

Note: MapInfo Professional 4.0 provides many built-in icons, most of which are not used in MapInfo
Professional’s standard user interface. To see a demonstration of the built-in icons, run the
sample program Icon Sampler (ICONDEMO.MBX) and then choose an item from the Icon
Sampler menu. To see the code for a particular icon, position the mouse over that icon.

The button’s ToolTip shows you the icon code. You also can copy an icon’s code to the clipboard:

1. Run the Icon Sampler application (ICONDEMO.MBX).
2. Choose an item from the Icon Sampler menu. A custom ButtonPad appears.

3. Click on the button whose icon you want to use. A dialog box appears.

4. Press Ctrl-C (the Windows shortcut for the Copy command).
5. Click OK to dismiss the dialog box.
6. Switch to MapBasic. Press Ctrl-V (the shortcut for Paste) to paste the code into your program.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 142 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Selecting Objects by Clicking With a ToolButton
If the user chooses a custom ToolButton and then clicks on a map object, the object is not selected;
instead, MapInfo Professional calls the custom ToolButton’s handler procedure. If you need to select
the object on which the user clicked, issue a Select statement from within the handler procedure.

The following handler procedure selects the town boundary region where the user clicked. To
determine the coordinates where the user clicked, call CommandInfo(). Then, to select objects at that
location, issue a Select statement with a Where clause, and specify a geographic operator such as
Contains. The following example selects all the town regions that contain the location where the user
clicked.

Sub t_click_handle
 Dim fx, fy As Float

 fx = CommandInfo(CMD_INFO_X)
 fy = CommandInfo(CMD_INFO_Y)
 Select * From towns
 Where obj Contains CreatePoint(fx, fy)

End Sub

Note: Instead of using a Select statement, you could call the SearchPoint() or SearchRect()
function to perform a search, and then call SearchInfo() to process the search results. For an
example of this technique, see SearchInfo() in the MapBasic Reference or online Help.

Another approach would be to define a procedure called SelChangedHandler. If the user is running
an application that contains a SelChangedHandler procedure, MapInfo Professional automatically
calls that procedure every time the selection changes. The user could select objects by pointing and
clicking with MapInfo Professional’s standard Select tool (the arrow-shaped icon at the upper left
corner of MapInfo Professional’s Main ButtonPad), and your application could respond by issuing
statements within the SelChangedHandler procedure.

Including Standard Buttons in Custom ButtonPads
You can include any of MapInfo Professional’s standard buttons (such as the Select button) on custom
ButtonPads. For example, the following statement creates a custom ButtonPad containing two buttons:
The standard MapInfo Professional Select button, and a custom button.

 Create ButtonPad ”ToolBox” As
 ’ Here is the standard Select button...
 ToolButton
 Icon MI_ICON_ARROW
 Calling M_TOOLS_SELECTOR
 HelpMsg ”Select objects for editing\nSelect”

 ’ Here is a custom ToolButton...
 ToolButton
 Icon MI_ICON_LINE
 DrawMode DM_CUSTOM_LINE
 Calling sub_procedure_name
 HelpMsg ”Draw New Delivery Route\nNew Route”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 143 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
The first button’s Calling clause specifies M_TOOLS_SELECTOR, which is a numeric code defined in
MENU.DEF. This code represents MapInfo Professional’s Select button. Every standard MapInfo
Professional button has a corresponding code in MENU.DEF. Because the second button is a custom
button, its Calling clause specifies the name of a procedure, rather than a numeric code.

Note that the custom button includes a DrawMode clause, but the Select button does not. When you
place a standard button on a custom pad, you should omit the DrawMode clause, because each of
MapInfo Professional’s standard buttons already has a pre-defined draw mode. You should only
specify a DrawMode clause when creating a custom ToolButton.

CAUTION: Caution: ToolButtons and ToggleButtons are not interchangeable. You cannot
convert one type of button to another type merely by replacing the ToolButton
keyword with the ToggleButton keyword (or vice versa). ToolButtons return x/y
coordinates in response to the user clicking on a window. ToggleButtons, however,
do not return coordinates, and they respond as soon as the user clicks on the
button.

If you include standard MapInfo Professional buttons in your custom ButtonPads, make sure that you
do not accidentally change a ToolButton to a ToggleButton. To see how MapInfo Professional’s
standard buttons are defined, view the MapInfo Professional menus file, MAPINFOW.MNU. (On the
Macintosh, this file is called MapInfo Professional Menus.) The menus file contains the Create
ButtonPad statements that define MapInfo Professional’s ButtonPads.

Note: You can copy button definitions out of MAPINFOW.MNU and paste them into your programs.

Assigning Help Messages to Buttons
Your users may not understand the purpose of a toolbar button just by looking at its icon. Therefore,
MapBasic lets you create two types of on-screen help messages to assist your users:

• Status bar help. Used to show a brief description of the button, this type of help message
appears on the MapInfo Professional status bar (assuming that the status bar is currently
visible).

• ToolTip help. Used to show the name of the button, this type of help message appears next to
the mouse cursor.

In earlier versions of MapInfo Professional, status bar help only appeared when the user clicked on a
button. In version 4.0 and later, both the status bar help and ToolTip help appear when the user leaves
the mouse cursor positioned over a toolbar button.

Both types of help messages are defined through the HelpMsg clause, in the Create ButtonPad and
Alter ButtonPad statements. Within the HelpMsg clause, you specify one string that contains the
status bar help message, followed by the letters \n, followed by the ToolTip message.

For example:

 Create ButtonPad ”Custom” As
 PushButton
 Icon MI_ICON_ZOOM_QUESTION
 Calling generate_report
 HelpMsg ”This button generates reports\nGenerate Report”
 Show

In this example, the custom button’s status bar help message is “This button generates reports” and its
ToolTip message is “Generate Report.” To show or hide the status bar, use the StatusBar statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 144 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Docking a ButtonPad to the Top of the Screen
Use the Alter ButtonPad statement to attach a toolbar to the top edge of the screen. (This is
sometimes known as “docking” the toolbar.) For example, the following statement docks the Main
toolbar:

 Alter ButtonPad ”Main” Fixed

The keyword Fixed specifies that the pad should be docked to the top of the screen. To change a
toolbar from docked to floating, specify Float instead of Fixed. The Fixed and Float keywords can also
be used within the Create ButtonPad statement, so that you can set the docked status at the moment
you create the toolbar.

To determine whether a toolbar is currently docked, call the ButtonPadInfo() function.

Other Features of ButtonPads
MapBasic also offers the following ButtonPad-related features:

• Enabled/Disabled Buttons. A MapBasic program can disable or enable custom buttons as
needed. For details, see the MapBasic Reference, Alter ButtonPad.

• Custom Button Icons. You can use a resource editor to create custom icons, and use those
custom icons on MapBasic ButtonPads.
Custom Draw Cursors. The cursor is the shape that moves as you move the mouse. By
default, all custom MapBasic buttons use a simple cursor, shaped like a pointer. However, you
can use a resource editor to create custom cursors.
The MapBasic development environment does not include a resource editor. However,
MapBasic programs can incorporate bitmaps and cursors created using other resource
editors. For more information about creating custom icons and cursors, see Chapter 12:
Integrated Mapping.

Integrating Your Application Into MapInfo Professional

The preceding sections have discussed how a MapBasic application can customize the user interface
by creating custom menus, dialogs, windows and ButtonPads. Once you have completed your
application, however, one issue will remain: what steps does the user have to take to run your
application, so that your customized user-interface will take effect?

Any MapInfo Professional user can run a MapBasic application by choosing Tools > Run MapBasic
Program. However, you may want to set up your application so that it runs automatically, instead of
forcing your users to choose File > Run MapBasic Program every time they run MapInfo Professional.
If you are creating what is known as a turn-key system, you probably want your application to run
automatically, as soon as the user launches MapInfo Professional.

Using Windows you can change the command line of a shortcut icon in a similar manner. Right-click
the shortcut icon, choose Properties, and click on the Shortcut tab.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 145 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Ordinarily, MapInfo Professional displays the Quick Start dialog as soon as the user runs it (unless the
user has cleared the Display Quick Start Dialog check box in the Startup Preferences dialog). However,
if you add the name of a MapBasic application to the command that launches MapInfo Professional,
then the Quick Start dialog will not appear. Depending on the nature of your application, this behavior
may or may not be desirable. If you want your application to run automatically, without disabling the
Quick Start dialog, you may need to use a different method for loading your application. Instead of
modifying the MapInfo Professional command line, you may want to create a special workspace, called
the Startup workspace.

If the user launches MapInfo Professional by double-clicking the MapInfo icon, the Quick Start dialog
box displays automatically (unless the user has cleared the Display Quick Start Dialog check box in the
Startup Preferences dialog). However, when the user launches MapInfo Professional by double-
clicking on a MapInfo document, the Quick Start dialog does not appear. Depending on the nature of
your application, this behavior may or may not be desirable. If you want your application to run
automatically, without disabling the Quick Start dialog, you may need to use a different method for
loading your application. You may want to create a special workspace, called the Startup workspace.

Loading Applications Through the Startup Workspace
“Startup” is a special name for a workspace. If a startup workspace exists on the user’s system,
MapInfo Professional loads the workspace automatically. If the startup workspace contains a Run
Application statement, MapInfo Professional runs the specified application.

For example, if you want to run the ScaleBar application, you could create a startup workspace that
looks like this:

 !Workspace
 !Version 600
 !Charset Neutral
 Run Application ”scalebar.mbx”

The first three lines are required for MapInfo Professional to recognize the file as a workspace. The
fourth line, in this example, launches a MapBasic application by executing a Run Application
statement.

The presence of a startup workspace has no effect on the display of the Quick Start dialog. MapInfo
Professional loads the startup workspace (if there is one), and then displays the Quick Start dialog
(unless the user has configured the system so that the Quick Start dialog never displays).

On Windows, the startup workspace has the name STARTUP.WOR and can be located in the directory
in which MapInfo Professional is installed or in the user’s private Windows directory (the directory
where WIN.INI is stored). If a STARTUP.WOR exists in both directories, both workspaces will be
executed when the user starts MapInfo Professional.

In a networked environment, if you want the startup workspace to apply to all MapInfo Professional
users on the network, you should place the startup workspace file in the directory where MapInfo
Professional is installed. If you do not want all the network users to run the same startup workspace
file, you should use the alternate location for the startup workspace (for example, on Windows, place
the workspace in the users’ private Windows directories).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 146 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
Manipulating Workspaces through MapBasic
Since workspaces are simply text files, you can create and edit a startup workspace using any text
editor. Furthermore, since a MapBasic program can perform file input/output, your MapBasic program
can automate the maintenance of the startup workspace.

To see how a MapBasic program can manipulate a workspace file, try this:

1. Choose MapInfo Professional’s Tools > Run MapBasic Program command to run the TextBox
application.

2. Choose Tools > TextBox > About TextBox to display the About TextBox dialog.
3. Click on the Auto-Load button on the About TextBox dialog. MapInfo Professional displays a

dialog that lets you activate automatic loading of the TextBox application.
4. Choose OK on the Enable Automatic Loading dialog. MapInfo Professional displays a

message indicating that the TextBox application is now configured to run automatically.
Choose OK on the About TextBox dialog.

5. Exit MapInfo Professional, then restart it. Note that in this new MapInfo Professional session,
the TextBox application runs automatically; you do not need to choose Tools > Run MapBasic
application.
When you choose OK in step 4, the TextBox application adds a Run Application statement to
the startup workspace file. If the startup workspace file does not exist, the TextBox application
creates it.

The maintenance of the startup workspace is handled by functions and procedures in the program
module auto_lib.mb. Many of the sample programs that are bundled with MapInfo Professional contain
the same functionality; for example, a MapInfo Professional user can set up the ScaleBar application to
run automatically by choosing the Auto-Load button on the About ScaleBar dialog.

The auto_lib.mb program module is one of the sample programs included with MapBasic. If you want
your application to include the Auto-Load feature, follow the instructions that appear in the comments
at the top of auto_lib.mb.

Performance Tips for the User Interface

Animation Layers
If you are making frequent updates to objects in a Map window, using an Animation Layer can make
the window redraw more quickly. Animation Layers are described earlier in this chapter.

Avoiding Unnecessary Window Redraws
Whenever your application alters a Map window (or alters an object in the window), MapInfo
Professional redraws the window. If your application makes several alterations, the Map window will
redraw several times, which can annoy your users.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 147 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface
There are two ways to suppress unnecessary window redraws:

• To suppress unnecessary redrawing of one Map window, use the Set Map ... Redraw Off
statement. Then issue all statements that affect the Map window. When you are finished
updating the map, issue a Set Map ... Redraw On statement to allow the window to redraw.
The window will redraw once, showing all changes you made.

• To suppress unnecessary redrawing of all MapInfo Professional windows, use the Set Event
Processing Off statement. When you are finished updating various windows, issue a Set
Event Processing On statement, and the screen will redraw once.

Purging the Message Window
The Print statement prints text to the Message window.

Note: Printing large amounts of text to the Message window can dramatically slow down subsequent
Print statements.

If your program prints large amounts of text to the message window, you should periodically clear the
Message window by issuing a Print Chr$(12) statement.

Suppressing Progress Bar Dialogs
If your application minimizes MapInfo Professional, you should suppress progress bars by using the
Set ProgressBars Off statement.

When a progress bar displays while MapInfo Professional is minimized, the progress bar is frozen for
as long as it is minimized. If you suppress the display of progress bars, the operation can proceed,
even if MapInfo Professional is minimized.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 148 MB_UG.pdf

8
Working With Tables
MapBasic provides you with a full complement of statements and
functions for working with tables. For instance, you can modify the
structure of a table using the Alter Table statement, or locate a row in a
table using Fetch. The Import statement lets you create a MapInfo table
from a text file and the Export statement lets you export a table to a
different format.

This chapter introduces you to the MapBasic statements and functions
that let you manage your MapInfo tables. Refer to the MapBasic
Reference for more information about each statement and function.

Sections in this Chapter:

Opening Tables Through MapBasic 150
Creating New Tables. 157
Accessing the Cosmetic Layer . 162
Accessing Layout Windows . 162
Multi-User Editing. 163
Files that Make Up a Table . 166
Raster Image Tables. 167
Working With Metadata . 169
Working With Seamless Tables. 171
Accessing DBMS Data . 173
Accessing/Updating Remote Databases with Linked Tables .
175
Performance Tips for Table Manipulation 176

User Guide Chapter 8: Working With Tables
Opening Tables Through MapBasic

A table must be open before a MapBasic application can access the table. Use the Open Table
statement to open a table. For example, the following statement opens the World table:

Open Table ”C:\mapinfo\data\world”

Notice that the Browse statement identifies the table by its alias (Earth). The table’s alias name
remains in effect for the as long as the table is open. The table has not been permanently renamed. To
permanently rename a table, use the Rename Table statement.

If you include the optional Interactive clause in the Open Table statement, and if the table you specify
cannot be located in the directory that you specify, MapInfo displays a dialog prompting the user to
locate the table. If you omit the Interactive keyword and the table cannot be located, the Open Table
statement generates an error.

Determining Table Names at Runtime
When referring to a table in MapBasic, you can either use a string expression or hard-code the table
name into your program. For example, if the tables States, Pipeline and Parcels are open when your
program is run, you can specify their names explicitly in your program:

Select * From States
Browse * From Pipeline
i = NumCols(Parcels)

You may or may not want to limit your program to work with specific table names. For example, you
might want to prompt the user to choose a table from a list of open tables. Since you wouldn’t know the
name of the selected table ahead of time, you couldn’t hard-code it into the program.

You can use a string variable to store the name of a table. Assuming that a table called Zoning is open,
you can do the following:

Dim work_table As String
work_table = ”Zoning”
Browse * From work_table

Opening Two Tables With The Same Name
MapInfo assigns a non-default table alias if you attempt to open two tables that have the same alias.
For example, if you open the table “C:\data1994\sites”, MapInfo assigns the table its default alias
(“sites”); but if you then attempt to open a different table that has an identical default alias (for example,
“C:\backup\sites”), MapInfo must assign a non-default alias to the second table, so that the two tables
can be differentiated. In this example, MapInfo might assign the second table an alias such as
“sites_2.”

If you include the optional Interactive keyword in the Open Table statement, MapInfo will display a
dialog to let the user specify the table’s non-default alias. If you omit the Interactive keyword, MapInfo
assigns the alias table name automatically.

As a result of this behavior, you may not be able to make assumptions about the alias name with which
a table was opened.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 150 MB_UG.pdf

User Guide Chapter 8: Working With Tables
However, you can use the TableInfo() function to determine the alias under which a table was opened,
as shown in the following example:

Include ”mapbasic.def”
Dim s_filename As String
Open Table ”states” Interactive
s_filename = TableInfo(0, TAB_INFO_NAME)
Browse * from s_filename

The function call TableInfo(0, TAB_INFO_NAME) returns the alias name of the most recently opened
table.

Opening Non-Native Files As Tables
You can access “non-native” files (dBASE, Lotus, Excel, or text files) as tables, even though they are
not stored in the MapInfo table format. However, before you access a non-native file through
MapBasic, you must register the file. When you register a file, MapInfo builds a table (.tab) file to
accompany the non-native file. You only need to register each file once. After you have registered a
file, you can treat the file as a table.

The following statement registers a dBASE file:

Register Table ”income.dbf” Type DBF

After you have registered a file, the file is considered a table, and you can open it the same way you
would open any MapInfo table: by issuing an Open Table statement.

Open Table ”income” Interactive

MapInfo’s ability to query a table is not affected by the table’s source. For example, you can issue a
SQL Select statement to extract data from a table, regardless of whether the table was based on a
spreadsheet or a database file.

However, MapInfo’s ability to modify a table does depend in part on the table’s source. If a table is
based on a .dbf file, MapInfo can modify the table; when you Update such a table in MapInfo, you are
actually modifying the original .dbf file. However, MapInfo cannot modify tables that are based on
spreadsheets or ASCII (text) files. If you need to modify a table, but MapInfo cannot modify the table
because it is based on a spreadsheet or ASCII file, make a copy of the table (using the Commit Table
... As statement) and modify the copy.

Creating A Report File From An Open MapInfo Table
High quality reports of tabular data, processed within MapInfo, can be produced using the industry
standard report writer. from Seagate Crystal Reports. Crystal provides a highly intuitive environment for
developing professional reports. See the Create Report From Table and Open Report statements in
the MapBasic Reference.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 151 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Reading Row-And-Column Values From a Table

MapBasic programs can access specific column values from specific rows in a table, through the
following procedure:

1. Use a Fetch statement to specify which row in the table you want to query. This action sets
which row is current.

2. Use a table-reference expression (for example, tablename.columnname) to access a specific
column in the current row.

For example, the following program reads the contents of the Country column from the first row of the
World table:

Dim s_name As String
Open Table ”world” Interactive
Fetch First From world
s_name = world.Country

Every open table has a current-row setting; this setting is known as the row cursor (not to be confused
with the mouse cursor, which is the shape that moves across the screen as you move the mouse).
When you issue a Fetch statement, you position the row cursor on a specific row in the table.
Subsequent table references (for example, world.country) extract data from whichever row is specified
by the cursor.

The Fetch statement provides several different ways of positioning the cursor. You can move the
cursor forward or backward one row at a time, position the cursor on a specific row number, or set the
cursor on the first or last row in the table. To determine whether a Fetch statement has attempted to
read past the end of a table, call the EOT() function. For more information on the Fetch statement or
the EOT() function, see the MapBasic Reference.

The MapBasic language recognizes three different types of expressions that reference specific column
values:

The preceding example used the tablename.columnname syntax (for example, world.country).

Another type of column reference is tablename.col#. In this type of expression, a column is specified
by number, not by name (where col1 represents the first column in the table). Since Country is the first
column in the World table, the assignment statement above could be rewritten as follows:

s_name = world.col1

Column reference syntax Example

tablename.columnname world.country

tablename.COLn world.COL1

tablename.COL(n) world.COL(i)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 152 MB_UG.pdf

User Guide Chapter 8: Working With Tables
A third type of column reference takes the form tablename.col(numeric expression). In this type of
reference, the column number is specified as a numeric expression within parentheses. The preceding
assignment statement could be rewritten as follows:

Dim i As Integer
i = 1
s_name = world.col(i)

Using this syntax, you can write a MapBasic program that determines, at runtime, which column to
reference.

The tablename in a table reference is optional in statements in which the table name is already part of
the statement. For instance, in the Browse statement you are required to specify column names and
then the table name. Since the table name is explicitly specified in the statement (in the From clause),
the column references at the beginning of the line do not need to include the tablename.

Select Country, Population/1000000 From World
Browse Country, Col2 From Selection

The Select statement also has a From clause, where you name the table(s) to be queried. Column
names that appear within a Select statement do not need the tablename. prefix if the Select statement
queries a single table. However, if a Select statement’s From clause lists two or more tables, column
references must include the tablename. prefix. For a general introduction to using the SQL Select
statement, see the MapInfo User Guide, or see Select in the MapBasic Reference.

There are instances in which you must use the COLn or the COL(n) column referencing method. In the
example above, the Select statement identifies two columns; the latter of these columns is known as a
derived column, since its values are derived from an equation (Population/1000000). The subsequent
Browse statement can refer to the derived column only as col2 or as col(2), because the derived
expression Population/1000000 is not a valid column name.

Alias Data Types as Column References
The preceding examples have used explicit, “hard-coded” column names. For example, the following
statement identifies the Country column and the Population column explicitly:

Select Country, Population/1000000 From World

In some cases, column references cannot be specified explicitly, because your application will not
know the name of the column to query until runtime. For example, if your application lets the user
choose a column from a list of column names, your application will not know until runtime what column
the user chose.

MapBasic provides a variable type, Alias, that you can use to store column expressions that will be
evaluated at runtime. As with String variables, you can assign a text string to an Alias variable.
MapBasic interprets the contents of the Alias variable as a column name whenever an Alias variable
appears in a column-related statement. For example:

Dim val_col As Alias
val_col = ”Inflat_Rate”
Select * From world Where val_col > 4

MapBasic substitutes the contents of val_col (the alias, Inflat_Rate) into the Select statement in order
to select all the countries having an inflation rate greater than 4 percent.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 153 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Note: The maximum length of the alias is 32 characters.

In the example below, the sub-procedure MapIt opens a table, maps it, and selects all records from a
specified column that have a value greater than or equal to a certain value. MapIt uses an Alias
variable to construct column references that will be evaluated at runtime.

Include ”mapbasic.def”
Declare Sub Main
Declare Sub MapIt(ByVal filespec As String,
 ByVal col_name As String,
 ByVal min_value As Float)

Sub Main
 Call MapIt(”C:\MAPINFOW\MAPS\WORLD.TAB”, ”population”, 15000000)
End Sub
Sub MapIt(ByVal filespec As String,

ByVal col_name As String,
ByVal min_value As Float)

 Dim a_name As Alias
 a_name = col_name
 Open Table filespec
 Map From TableInfo(0, TAB_INFO_NAME)
 Select * From TableInfo(0, TAB_INFO_NAME)
 Where a_name >= min_value
End Sub

In the MapIt procedure, a Select statement specifies an Alias variable (a_name) instead of an explicit
column name. Note that the col_name parameter is not an Alias parameter; this is because MapBasic
does not allow by-value Alias parameters. To work around this limitation, the column name is passed
as a by-value String parameter, and the contents of the String parameter are copied to a local Alias
variable (a_name).

The example above demonstrates how an Alias variable can contain a string representing a column
name (“population”). An Alias variable also can contain a full column reference in the form
tablename.columnname. The following example demonstrates the appropriate syntax:

Dim tab_expr As Alias
Open Table ”world”
Fetch First From world
tab_expr = ”world.COL1”
Note tab_expr

The preceding Note statement has the same effect as the following statement:

Note world.COL1

Scope
The syntax tablename.columnname (for example, world.population) is similar to the syntax used to
reference an element of a custom Type. MapBasic tries to interpret any name.name expression as a
reference to an element of a Type variable. If the expression cannot be interpreted as a type element,
MapBasic tries to interpret the expression as a reference to a column in an open table. If this fails,
MapBasic generates a runtime error.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 154 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Using the “RowID” Column Name To Refer To Row Numbers
RowID is a a special column name that represents the row numbers of rows in the table. You can treat
RowID as a column, although it isn’t actually stored in the table. Think of RowID as a virtual column,
available for use, but not visible. The first row of a table has a RowID value of one, the second row has
a RowID value of two, and so on.

The following example selects the first row from the World table:

Select * from world Where RowID = 1

The following example uses RowID to Select all of the states with a 1990 population greater than the
median.

Dim median_row As Integer
Select * From states Order By pop_1990 Into bypop
median_row = Int(TableInfo(bypop,TAB_INFO_NROWS)/2)
Select * From bypop Where RowID > median_row

Since the TableInfo() function returns the total number of rows in the virtual table bypop, the variable
median_row contains the record number of the state with the median population. The last select
statement selects all the states that come after the median in the ordered table bypop.

If you delete a row from a table, the row is not physically deleted until you perform a pack operation.
(Rows that have been deleted appear grayed in a Browse window.) Any deleted row still has a RowID
value. Thus, deleting a row from a table does not affect the RowID values in the table; however, if you
delete a row, save your changes, and then pack the table, the table’s RowID values do change. To
pack a table, choose MapInfo’s Table > Maintenance > Pack Table command, or issue the MapBasic
statement Pack Table.

Using the “Obj” Column Name To Refer To Graphic Objects
The Obj column is a special column name that refers to a table’s graphical objects. Any table that has
graphical objects has an Obj column (although the Obj column does not appear in any Browser
window). If a row does not have an associated graphic object, that row has an empty Obj value.

The following example selects all rows that do not have a graphic object:

Select * From sites Where Not Obj

This is useful, for instance, in situations where you have geocoded a table and not all of the records
matched, and you want to select all of the records that did not match.

The following example copies a graphical object from a table into an Object variable:

Dim o_var As Object
Fetch First From sites
o_var = sites.obj

For more information about graphical objects, see Chapter 10: Graphical Objects.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 155 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Finding Map Addresses In Tables
MapInfo users can find addresses in maps by choosing Query > Find. MapBasic programs can perform
similar queries by issuing Find statements and Find Using statements. The Find Using statement
specifies the table to be queried; the Find statement tries to determine the geographic coordinates of a
location name (for example, “23 Main St”). The Find statement also can locate the intersection of two
streets, given a string that includes a double-ampersand (for example, “Pawling Ave && Spring Ave”).

After issuing a Find statement, call CommandInfo() to determine whether the address was located,
and call CommandInfo() again to determine the location’s geographic coordinates. Unlike MapInfo’s
Query > Find command, the MapBasic Find statement does not automatically re-center a Map window.
If you want to re-center the Map window to show the location, issue a Set Map statement with a Center
clause. Also, the Find statement does not automatically add a symbol to the map to mark where the
address was found. If you want to add a symbol, use the CreatePoint() function or the Create Point
statement. For a code example, see Find in the MapBasic Reference or online Help.

Geocoding
To perform automatic geocoding:

1. Use the Fetch statement to retrieve an address from a table.
2. Use the Find Using statement and the Find statement to find the address.
3. Call CommandInfo() to determine how successful the Find statement was; call

CommandInfo() again to determine x- and y-coordinates of the found location.
4. Create a point object by calling the CreatePoint() function or the Create Point statement.
5. Use the Update statement to attach the point object to the table.

To perform interactive geocoding, issue the following statement:

Run Menu Command M_TABLE_GEOCODE

If you need to perform high-volume geocoding, you may want to purchase MapMarker, a dedicated
geocoding product that is sold separately. MapMarker geocodes faster than MapInfo and allows single-
pass geocoding across the entire United States. MapBasic applications can control MapMarker
through its programming interface. For more information on MapMarker, contact MapInfo sales. The
phone numbers appear at the start of this and other MapInfo manuals.

Performing SQL Select Queries
MapInfo users can perform sophisticated queries by using MapInfo’s Query > SQL Select dialog. All of
the power of the SQL Select dialog is available to MapBasic programmers through MapBasic’s Select
statement. You can use the Select statement to filter, sort, sub-total, or perform relational joins on your
tables. For information, see Select in the MapBasic Reference.

Error Checking for Table and Column References
MapBasic cannot resolve references to tables and columns at compile time. For instance, if your
program references a column called states.pop, the MapBasic compiler cannot verify whether the
states table actually has a column called pop. This means that typographical errors in column
references will not generate errors at compile time. However, if a column reference (such as
states.pop) contains a typographical error, an error will occur when you run the program.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 156 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Try the following to minimize the possibility of generating runtime errors. Use the Interactive clause
with the Open Table statement, when appropriate. If the table cannot be located, a dialog will prompt
the user to locate the table. Don’t assume that the table was opened under its default alias. After you
issue an Open Table statement, call TableInfo(0, TAB_INFO_NAME) to determine the alias assigned
to the table. For more information on opening tables, see Open Table in the MapBasic Reference.

Writing Row-And-Column Values to a Table

To add new rows to a table, use the Insert statement. To change the values stored in the columns of
existing rows, use the Update statement. Both statements are described in the MapBasic Reference
and online Help.

If you add new rows to a table or modify the existing rows in a table, you must save your changes by
issuing a Commit statement. Alternately, to discard any unsaved edits, issue a RollBack statement.

Creating New Tables

Use the Create Table statement to create a new, empty table. Use the Create Index statement to add
indexes to the table, and use Create Map to make the table mappable.

The following example creates a mappable table with a name, address, city, amount, order date, and
customer ID columns. The name field and the customer ID field are indexed.

Create Table CUST
 (Name Char(20),
 Address Char(30),
 City Char(30),
 Amount Decimal(5,2),
 OrderDate Date,
 CustID Integer)
 File ”C:\customer\Cust.tab”
Create Map For CUST CoordSys Earth

Create Index On CUST (CustID)

Create Index On CUST(Name)

You can also create a table by saving an existing table (for example, a selection) as a new table using
the Commit statement, or by importing a table using the Import statement.

Modifying a Table’s Structure
Every table has a structure. The structure refers to issues such as how many columns are in the table,
and which of the columns are indexed. A MapInfo user can alter a table’s structure by choosing
MapInfo’s Table > Maintenance > Table Structure command. A MapBasic program can alter a table’s
structure by issuing statements such as Alter Table and Create Index.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 157 MB_UG.pdf

User Guide Chapter 8: Working With Tables
As a rule, a table’s structure cannot be modified while the table has unsaved edits. If you have added
rows to a table, but you have not saved the table, the table has unsaved edits. If a table has unsaved
edits, you must save the edits (by issuing a Commit statement) or discard the edits (by issuing a
Rollback statement) before modifying the table’s structure.

The Alter Table statement modifies a table’s structure. The following example renames the Address
column to ShipAddress, lengthens the Name column to 25 characters, removes the Amount column,
adds new ZIP Code and Discount columns, and re-orders the columns.

Alter Table CUST (Rename Address ShipAddress,
 Modify Name Char(25),
 Drop Amount
 Add Zipcode Char(10),
 Discount Decimal(4,2)
 Order Name, Address, City, Zipcode,
 OrderDate, CustID, Discount)

You cannot change the structure of tables that are based on spreadsheets or delimited ASCII files, and
you cannot change the structure of the Selection table.

Use the Add Column statement to add a temporary column to a table. The Add Column statement
lets you create a dynamic column that is computed from values in another table. Add Column can also
perform advanced polygon-overlay operations that perform proportional data aggregation, based on
the way one table’s objects overlap another table’s objects. For example, suppose you have one table
of town boundaries and another table that represents a region at risk of flooding. Some towns fall partly
or entirely within the flood-risk area, while other towns are outside the risk area. The Add Column
statement can extract demographic information from the town-boundaries table, then use that
information to calculate statistics within the flood-risk area. For information about the Add Column
statement, see the MapBasic Reference.

Creating Indexes and Making Tables Mappable
Table indexes help MapInfo to optimize queries. Some operations, like MapInfo’s Find and Geocode
menu items, require an index to the field to be matched against. For instance, before you can use the
Find command to locate a customer in your database by name, you must index the name column.
Select statements execute faster for many queries when you use columns with indexes. SQL joins
create a temporary index if the fields specified in the Where clause are not indexed. There is no limit to
the number of columns that can be indexed. The Obj column is always indexed.

To create an index in MapBasic, use the Create Index statement. To remove an index, use the Drop
Index statement.

MapBasic cannot use indexes created in other packages and MapBasic cannot index on an
expression.

An index does not change the order of rows in a Browser window. To control the order of rows in a
Browser, issue a Select statement with an Order By clause, and browse the selection.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 158 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Reading A Table’s Structural Information
The functions TableInfo(), ColumnInfo() and NumTables() let you determine information about the
tables that are currently open.

• TableInfo() returns the number of rows in the table, the number of columns, and whether or
not the table is mappable.

• ColumnInfo() returns information about a column in a table, such as the column’s name, the
column’s data type, and whether the column is indexed.

• NumTables() returns the number of currently open tables (including temporary tables such as
Query1).

The following program determines which tables are open and copies the table names into an array.

Include ”mapbasic.def”
Dim i, table_count As Integer
Dim tablenames() As String

’ determine the number of open tables
table_count = NumTables()

’ Resize the array so that it can hold
’ all of the table names.
ReDim tablenames(table_count)

’ Loop through the tables
For i = 1 To table_count

 ’ read the name of table # i
 tablenames(i) = TableInfo(i, TAB_INFO_NAME)

 ’display the table name in the message window
 Print tablenames(i)

Next

Working With The Selection Table
Selection is a special table name that represents the set of rows that are currently selected. A
MapBasic program (or an end-user) can treat the Selection table like any other table.

For example, you can browse the set of currently-selected rows by issuing the following statement:

Browse * From Selection

When you access the Selection table in this way, MapInfo takes a snapshot of the table and names the
snapshot QueryN, where N is a integer value of one or greater. Like Selection, QueryN is a temporary
table. The SelectionInfo() function lets you determine the table alias MapInfo will assign to the current
Selection table (i.e., to learn whether the current Selection table will be known as Query1 or as
Query2). SelectionInfo() also lets you determine other information about the Selection, such as the
number of selected rows.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 159 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Cleaning Up “QueryN” Tables
As you use MapInfo, you may find that you have opened a number of “QueryN” tables (Query1,
Query2, etc.). For example, if you click on a map object and then browse the selection, the window’s
title may read “Query1 Browser.” Each QueryN is a snapshot of a former selection.

MapBasic programs can cause QueryN tables to be opened as well. For example, making a reference
to a column expression such as Selection.Obj causes MapInfo to open a QueryN table. If you want
your MapBasic program to close any QueryN tables that it opens, do the following:

• When you use Select statements, include the optional Into clause. Then, instead of accessing
the table name “Selection” access the table name that you specified in the Into clause. If you
use the Into clause, MapInfo will not open QueryN tables when you access the query results.
When you are done working with the query results table, close it by using a Close Table
statement.

• If the user makes a selection (for example, by clicking on a map object), and then your
program works with the selection, MapInfo will open a QueryN table. The following example
shows how to close the QueryN table.

 ’ Note how many tables are currently open.
 i_open = NumTables()

 ’ Access the Selection table as necessary. For example:
 Fetch First From Selection
 obj_copy = Selection.obj

 ’ If we just generated a QueryN table, close it now.
 If NumTables() > i_open Then
 Close Table TableInfo(0, TAB_INFO_NAME)
 End If

Changing the Selection
Use the Select statement to change which rows are selected. The Select statement is a very powerful,
versatile statement. You can use the Select statement to filter, sort, or sub-total your data, or to
establish a relational join between two or more tables. All of the power of MapInfo’s Query > SQL
Select command is available to MapBasic programmers through the Select statement.

If you issue a Select statement, and if you do not want the results table to have a name such as
Query1, you can assign another name to the results table. The Select statement has an optional Into
clause that lets you specify the name of the results table. For example, the following statement makes
a selection and names the results table “Active.”

Select * From sites
 Where growth > 15
 Into Active

For an introduction to the capabilities of SQL Select queries, see the MapInfo User Guide. For detailed
information about the Select statement, see Select in the MapBasic Reference.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 160 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Updating the Currently-Selected Rows
You can use the Update statement to modify the Selection table. If you modify the Selection table, the
changes that you make are applied to the base table on which the selection is based.

For example, the following Select statement selects some of the rows from the employees table. After
the Select statement, an Update statement modifies the data values of the selected rows.

Select * from employees
Where department = ”marketing” and salary < 20000

Update Selection
Set salary = salary * 1.15

The Update statement will alter the values of rows in the employees table, because the selection is
based on the employees table.

Using the Selection for User Input
The Selection process is part of the user interface. Some applications are arranged so that the user
selects one or more rows, then chooses an appropriate menu item. When the user makes a selection,
the user is specifying an object (a noun). When the user chooses a menu item, the user is specifying
an action (a verb) to apply to that object.

The sample program, TextBox, is based on this noun/verb model. The user selects one or more text
objects, then chooses the Tools > TextBox > Create Text Boxes command. The TextBox application
then queries the Selection table, and draws boxes around the text objects that the user selected.

To query the current selection, use the SelectionInfo() function. By calling SelectionInfo(), you can
determine how many rows are selected (if any) at the present time. If rows are currently selected, you
can call SelectionInfo() to determine the name of the table from which rows were selected. You then
can call TableInfo() to query additional information about the table.

If your application includes a sub-procedure called SelChangedHandler, MapInfo calls that procedure
every time the selection changes. For example, you may want some of your application’s custom menu
items to only be enabled when rows are selected. To perform that type of selection-specific menu
maintenance, create a SelChangedHandler procedure. Within the procedure, call
SelectionInfo(SEL_INFO_NROWS) to determine if any rows are selected. Based on whether any
rows are selected, issue an Alter Menu Item statement that enables or disables appropriate menu
items. For more information on menu maintenance, see Chapter 7: Creating the User Interface.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 161 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Accessing the Cosmetic Layer

Each Map window has one Cosmetic layer, a special-purpose layer which is the top layer in the map. If
the user performs a Find operation, MapInfo places a symbol at the “found” location. Such symbols are
stored in the Cosmetic layer. in earlier versions of MapInfo, labels were also stored in the Cosmetic
layer. Version 4.0, however, treats labels as display attributes, not as Cosmetic objects. See
Chapter 10: Graphical Objects for more information on labeling.

To control the Cosmetic layer through MapBasic, issue table-manipulation statements (such as Select,
Insert, Update, or Delete) and specify a table name such as CosmeticN (where N is an Integer, one
or larger). For example, the table name Cosmetic1 corresponds to the Cosmetic layer of the first Map
window on the screen. The following statement selects all objects in that Map window’s Cosmetic layer:

Select * From Cosmetic1

To determine a Cosmetic layer’s exact table name, call WindowInfo() with the code
WIN_INFO_TABLE. For example, the following statement deletes all objects from the Cosmetic layer
of the active map window (assuming that the active window is a Map window):

Delete From WindowInfo(FrontWindow(), WIN_INFO_TABLE)

Accessing Layout Windows

MapBasic’s object-manipulation statements can be applied to the objects on a Layout window. To
manipulate a Layout window, issue statements that use the table name LayoutN (where N is an
integer, one or larger).

For example, the table name Layout1 corresponds to the first Layout window that you open. The
following statement selects all objects from that Layout window:

Select * From Layout1

You can determine a Layout window’s exact table name by calling the WindowInfo() function with the
WIN_INFO_TABLE code.

Note: Objects stored on a Layout window use a special coordinate system, which uses “paper” units
(units measured from the upper-left corner of the page layout). Any MapBasic program that
creates or queries object coordinates from Layout objects must first issue a Set CoordSys
statement that specifies the Layout coordinate system.

For example, the TextBox sample program draws boxes (rectangle objects) around any currently-
selected text objects, regardless of whether the selected text objects are on a Map window or a Layout
window. If the selected objects are Layout objects, TextBox issues a Set CoordSys Layout statement.

When you are using MapInfo interactively, MapInfo’s Statistics Window gives you an easy way of
determining the table name that corresponds to a Layout window or to a Map window’s Cosmetic layer.
If you select an object in a Map’s Cosmetic layer, and then show the Statistics Window (for example, by
choosing Options > Show Statistics Window), the Statistics window displays a message such as,
“Table Cosmetic1 has 1 record selected.” Similarly, if you select an object from a Layout window, the
Statistics window displays, “Table Layout1 has 1 record selected.”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 162 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Multi-User Editing

If your MapBasic program works with tables in a multiple-user environment, you may encounter file-
sharing conflicts. Sharing conflicts occur because MapInfo only allows one user to modify a table at a
time.

This section spells out the rules that govern MapInfo’s multi-user editing behavior. Read this section if
you want to write a MapBasic program that allows multiple users to modify the same table at the same
time.

The Rules of Multi-User Editing
MapInfo’s multi-user table editing has three restrictions, described below.

• Rule 1: A table may only be edited by one user at a time.
Imagine two hypothetical users: User A and User B. Both users are attempting to use the
same table, which is stored on a network.

User A begins editing the table. (For example, User A adds new rows to the table.) Moments
later, User B attempts to edit the same table. MapInfo prevents User B from editing the table,
and displays the message, “Cannot perform edit. Someone else is currently editing this table.”
If User B is trying to edit the table through a MapBasic application, a runtime error occurs in the
application.

As long as User A continues to edit the table, MapInfo prevents User B from editing the same
table. This condition remains until User A performs Save, Revert (discarding the edits), or
Close Table.

Note: User B is allowed to read from the table that User A is editing. For example, User B
can display the table in a Map window. However, User B will not “see” the edits made
by User A until User A performs a Save.

• Rule 2: Users cannot read from a table while it is being saved.
After editing the table, User A chooses the File > Save Table command. Then, while the Save
operation is still underway, User B attempts to read data from the table. As long as the Save is
underway, MapInfo prevents User B from accessing the table at all. MapInfo displays a dialog
box (on User B’s computer) with the message, “Cannot access file <tablename>.DAT for read.”
The dialog contains Retry and Cancel buttons, with the following meaning:

Retry
If User B clicks Retry, MapInfo repeats the attempt to read from the file. The Retry attempt will
fail if the Save is still underway. The user can click the Retry button repeatedly. After the Save
operation finishes, clicking the Retry button succeeds.

Cancel
If User B clicks Cancel, MapInfo cancels the operation, and the Retry/Cancel dialog box
disappears. Note: If User B was loading a workspace when the sharing error occurred, clicking
Cancel may halt the loading of the rest of the workspace. For example, a workspace contains
Open Table statements. If the Open Table statement was the statement that caused the
sharing conflict, and if the user Cancels the Retry/Cancel dialog, MapInfo will not open the
table. Subsequent statements in the workspace may fail because the table was not opened.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 163 MB_UG.pdf

User Guide Chapter 8: Working With Tables
• Rule 3: A Save cannot be started while the table is being read by other users.
If other users are reading the table at the exact moment that User A chooses File > Save
Table, the Save Table command cannot proceed. MapInfo displays the message, “Cannot
open file <tablename>.DAT for writing.” The dialog contains Retry and Cancel buttons, with the
following meaning:

Retry
If User A clicks Retry, MapInfo repeats the attempt to save the table. The user can click the
Retry button repeatedly. Clicking the Retry button will only succeed if the other users have
finished reading from the table.

Cancel
If User A clicks Cancel, MapInfo cancels the Save operation, and the Retry/Cancel dialog box
disappears. At this point, the table has not been saved, and the edits will not be saved unless
User A chooses File > Save Table again.

How to Prevent Conflicts When Reading Shared Data
As discussed in the previous section, some sharing conflicts display a Retry/Cancel dialog box.
Ordinarily, the Retry/Cancel dialog box appears at the moment a sharing conflict occurs. However, a
MapBasic program can suppress the dialog box by using the Set File Timeout statement.

In the parts of your program where you open or read from a shared table, use the Set File Timeout
statement with a value larger than zero. For example, if you have a procedure that opens several
tables, you may want to issue this statement at the start of the procedure:

Set File Timeout 100

The Set File Timeout statement sets a time limit; in this example, the time limit is 100 seconds. In
other words, MapInfo will automatically retry any table operations that produce a sharing conflict, and
MapInfo will continue to retry the operation for up to 100 seconds. Note that MapInfo retries the table
operations instead of displaying a Retry/Cancel dialog. If the sharing conflict still occurs after 100
seconds of retries, the automatic retry stops, and MapInfo displays the Retry/Cancel dialog box.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 164 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Preventing Conflicts When Writing Shared Data
Several MapBasic statements alter the contents of a table. For example, the Insert statement adds
new rows to a table. If your program attempts to alter the contents of a table, and a sharing conflict
occurs, a MapBasic runtime error occurs. To trap this error, use the OnError statement. For example, if
you have a procedure that inserts new rows into a table (as in the example below), you should create
an error-handling routine, and place an OnError statement at the top of the procedure to enable error
trapping. (Error-handling is discussed in more detail in Chapter 6: Debugging and Trapping Runtime
Errors.)

CAUTION: Use the Set File Timeout statement and the OnError statement exclusively. In places
where an error handler is enabled, the file-timeout value should be zero. In places
where the file-timeout value is non-zero, error handling should be disabled. The
following example demonstrates this logic.

Function MakeNewRow(ByVal new_name As String) As Logical

’turn off automatic retries
 Set File Timeout 0

’turn off window redraws
 Set Event Processing Off

’enable error-trapping
 OnError Goto trap_the_error

’Add a new row, and save the new row immediately.
 Insert Into Sitelist (”Name”) Values (new_name)
 Commit Table Sitelist

’Set return value to indicate success.
 MakeNewRow = TRUE

exit_ramp:

 Set Event Processing On
 Exit Function

trap_the_error:
 ’ The program jumps here if the Insert or Commit
 ’ statements cause runtime errors (which will happen
 ’ if another user is already editing the table).

 If Ask(”Edit failed; try again?”, ”Yes”, ”No”) Then
 ’ ... then the user wants to try again.
 Resume 0
 Else
 ’ the user does not want to retry the operation.
 ’ If the Insert succeeded, and we’re getting an error
 ’ during Commit, we should discard our edits.
 Rollback Table Sitelist

 ’ set function’s return value to indicate failure:
 MakeNewRow = FALSE
 Resume exit_ramp
 End If
End Function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 165 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Note the following points:

• When you modify a shared table, try to minimize the amount of time that the table has unsaved
edits. In the example above, the Commit statement follows immediately after the Insert
statement, so that there is very little time during which the table has unsaved edits.

• The example uses Set Event Processing Off to suspend event processing; as a result,
MapInfo will not redraw any windows during the edit. If we did not suspend event processing,
the Insert statement might cause MapInfo to redraw one or more windows, and the window
redraw could conceivably trigger a sharing conflict (for example, because other tables in the
same Map window may have a sharing conflict).

• This function sets file-timeout to zero. The procedure that calls this function may need to reset
file-timeout to its previous value.

Opening a Table for Writing
When you open a table in a multiple-user environment, there is a chance that MapInfo will open the
table with read-only access, even if the files that comprise the table are not read-only. If a MapBasic
program issues an Open Table statement at the exact moment that the table is being accessed by
another user, MapInfo may open the table with a read-only status. The read-only status prevents
successive statements from modifying the table.

The following example shows how to prevent MapInfo from opening shared tables with a read-only
status. Instead of simply issuing an Open Table statement, issue the statement within a loop that
iterates until the file is opened read/write.

Retry_point:

 Open Table ”G:\MapInfo\World”
 If TableInfo(”World”, TAB_INFO_READONLY) Then
 Close Table World
 Goto Retry_point
 End If

Files that Make Up a Table

A table consists of several files: one file contains information about the table structure (column names,
etc.); another file contains the table’s row-and-column values; another file contains the table’s graphic
objects (if any); and the remaining files contain indexes. The file containing the row-and-column data
can be in any format supported by MapInfo: .dbf, Lotus .wks or .wk1 format, delimited ASCII file format,
or Excel .xls file format.

• filename.tab: Describes the structure of your table.
• filename.dat or filename.dbf or filename.wks: Contains tabular (row-and-column) data.
• filename.map: Contains the table’s graphic objects.
• filename.id: Contains a geographic index.
• filename.ind: Contains indexes for columns in the table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 166 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Because each table consists of several component files, you must be very careful when renaming a
table. To rename a table, choose MapInfo’s Table > Maintenance > Rename Table command, or issue
the MapBasic Rename Table statement.

Raster Image Tables

Raster image tables (tables that display only raster image data, not vector data) do not have all of the
component files listed above, because raster image tables do not contain tabular data. Every raster
image table consists of at least two files: a .tab file (which stores the image’s control points) and the file
or files that store the raster image. For example, if a raster image table is based on the file photo.tif, the
table might consist of two files: photo.tif and photo.tab.

In many ways, a raster image table is just like any other table. To open a raster image table, use an
Open Table statement. To display a raster image table in a Map window, issue a Map statement. To
add a raster image table to an existing map, issue an Add Map Layer statement. However, you cannot
perform a Select operation on a raster image table. To determine if a table is a raster table, call
TableInfo() with the TAB_INFO_TYPE code. If the table is a raster table, TableInfo() returns the code
TAB_TYPE_IMAGE. As a rule, MapInfo does not alter the original image file on which a raster table is
based. Therefore:

• If you use the Drop Table statement to delete a raster table, MapInfo deletes the table file, but
does not delete the image file on which the table is based.

• If you use the Rename Table statement on a raster table, MapInfo renames the table file, but
does not rename the image file on which the table is based.

• If you use the Commit statement to copy a raster table, MapInfo copies the table file but does
not copy the image file on which the table is based.

A raster image table’s .tab file is created when a user completes MapInfo’s Image Registration dialog.
If you need to create a .tab file for a raster image through a MapBasic program, create the file using
standard file input/output statements: create the file using the Open File statement, and write text to
the file using the Print # statement; see example below.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 167 MB_UG.pdf

User Guide Chapter 8: Working With Tables
The following program creates a table file to accompany a raster image file. This program assigns
“dummy” coordinates, not true geographic coordinates. Therefore, the final table will not be suitable for
overlaying vector map layers. However, if the raster image is a non-map image (as a company logo),
the use of non-geographic coordinates is not a problem.

Include ”mapbasic.def”
Declare Sub Main
Declare Function register_nonmap_image(ByVal filename As String,
 ByVal tablename As String) As Logical

Sub Main
 Dim fname, tname As String
 fname = ”c:\data\raster\photo.gif” ’name of an existing image
 tname = PathToDirectory$(fname)
 + PathToTableName$(fname) + ”.tab” ’name of table to create
 If FileExists(tname) Then
 Note ”The image file is already registered; stopping.”
 Else
 If register_nonmap_image(fname, tname) Then
 Note ”Table file created for the image file: ”
 + fname + ”.”
 Else
 Note ”Could not create table file.”
 End If
 End If
End Sub

Function register_nonmap_image(ByVal filename As String,
 ByVal tablename As String) As Logical
 register_nonmap_image = FALSE
 OnError GoTo handler
 Open File tablename For Output As #1 FileType ”MIta”
 Print #1, ”!Table”
 Print #1, ”!Version 300”
 Print #1, ”!charset Neutral”
 Print #1
 Print #1, ”Definition Table”
 Print #1, ” File ””” + filename + ””””
 Print #1, ” Type ””RASTER”” ”
 Print #1, ” (1,1) (1,1) Label ””Pt 1””, ”
 Print #1, ” (5,1) (5,1) Label ””Pt 2””, ”
 Print #1, ” (5,5) (5,5) Label ””Pt 3”” ”
 Print #1, ” CoordSys NonEarth Units ””mm”” ”
 Print #1, ” Units ””mm”” ”
 Print #1, ” RasterStyle 1 45” ’ Brightness; default is 50
 Print #1, ” RasterStyle 2 60” ’ Contrast; default is 50
 Close File #1
 register_nonmap_image = TRUE ’ set function return value
last_exit:
 Exit Function
handler:
 Close File #1
 Resume last_exit
End Function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 168 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Working With Metadata

What is Metadata?
Metadata is data that is stored in a table’s .TAB file, instead of being stored as rows and columns. For
example, if you want to record summary information about who edited a table or when they performed
the edits, you could store that information as metadata.

Metadata is not displayed in the standard MapInfo user interface. Users cannot see a table’s metadata
(unless they display the .TAB file in a text editor or run the TableMgr sample MBX). However, MapBasic
applications can read and write metadata values.

Each table can have zero or more metadata keys. Each key represents an information category, such
as an author’s name, a copyright notice, etc. For example, a key named “\Copyright” might have the
value “Copyright 1999 Acme Corp.”

What Do Metadata Keys Look Like?
Each metadata key has a name, which always starts with the “\” (backslash) character. The key name
never ends with a backslash character. Key names are not case-sensitive.

The key’s value is always a string, up to 239 characters long.

The following table provides samples of metadata keys and key values.

Note the following points:

• Spaces are allowed within key names and within key values.
• You can define a hierarchy of keys by using key names that have two or more backslash

characters. In the table above, several of the keys belong to a hierarchy that starts with the
“\Info” key. Arranging keys in hierarchies allows you to work with an entire hierarchy at a time
(for example, you can delete an entire hierarchy with a single statement).

• “\IsReadOnly” is a special key, reserved for internal use by MapInfo. When you add metadata
to a table, MapInfo automatically creates the \IsReadOnly key. Do not attempt to modify the
\IsReadOnly key.

• The table above shows each string within quotation marks to emphasize that they are string
values. However, when you retrieve keys from a table, the strings retrieved by MapBasic do
not actually include quotation marks.

Sample Key Name Sample Key Value

"\Copyright Notice" Copyright 2001 Bryan Corp."

"Info" "Tax Parcels Map"

"Info Author" "Meghan Marie"

"Info\Date\Start" "12/14/01"

"Info\Date\End" "12/31/01"

"IsReadOnly" "FALSE"
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 169 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Examples of Working With Metadata
The GetMetadata$() function allows you to query a table’s metadata, but only if you already know the
exact name of the metadata key. If you know that a table has a key called “\Copyright” then the
following function call returns the value of that key:

s_variable = GetMetadata$(table_name, ”\Copyright”)

The Metadata statement allows you to create, modify, or query a table’s metadata, even if you do not
know the names of the keys. The following examples demonstrate the various actions that you can
perform using the Metadata statement. Note: In the following examples, table_name represents a
string variable that contains the name of an open table.

The following example stores a key value in a table. If the key already exists, this action changes the
key’s value; if the key does not already exist, this action adds the key to the table’s metadata.

Metadata Table table_name
 SetKey ”\Info\Author” To ”Laura Smith”

The following statement deletes the “\Info\Author” key from the table.

Metadata Table table_name
 Dropkey ”\Info\Author”

The following statement deletes an entire hierarchy of keys at one time. All keys whose names start
with “\Info\” will be deleted.

Metadata Table table_name
 Dropkey ”\Info” Hierarchical

When you use the Metadata statement to write or delete metadata, the changes take effect
immediately. You do not need to perform a Save operation.

You also can use the Metadata statement to read the metadata from a table, even if you do not know
the names of the keys. To read a table’s metadata:

1. Issue a Metadata Table ... SetTraverse statement to initialize a traversal.
2. Issue a Metadata Traverse ... Next statement to retrieve a key. This statement retrieves the

key’s name into one string variable, and retrieves the key’s value into another string variable.
3. Continue to issue Metadata Traverse ... Next statements to retrieve additional keys. Typically,

this statement is issued from within a loop. Once you have exhausted the keys, Metadata
Traverse ... Next returns an empty string as the key name.

4. Terminate the traversal by issuing a Metadata Traverse ... Destroy statement. This action
releases the memory used by the traversal.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 170 MB_UG.pdf

User Guide Chapter 8: Working With Tables
The following example shows how to traverse a table’s metadata.

Sub Print_Metadata(ByVal table_name As String)

 Dim i_traversal As Integer
 Dim s_keyname, s_keyvalue As String

 ’ Initialize the traversal. Specify ”\” as the
 ’ starting key, so that the traversal will start
 ’ with the very first key.
 Metadata Table table_name
 SetTraverse ”\” Hierarchical Into ID i_traversal
 ’ Attempt to fetch the first key:
 Metadata Traverse i_traversal
 Next Into Key s_keyname Into Value s_keyvalue

 ’ Now loop for as long as there are key values;
 ’ with each iteration of the loop, retrieve
 ’ one key, and print it to the Message window.
 Do While s_keyname <> ””
 Print ” ”
 Print ”Key name: ” & s_keyname
 Print ”Key value: ” & s_keyvalue

 Metadata Traverse i_traversal
 Next Into Key s_keyname Into Value s_keyvalue
 Loop

 ’ Release this traversal to free memory:
 MetaData Traverse i_traversal Destroy

End Sub

For a complete listing of the syntax of the Metadata statement, see Metadata in the MapBasic
Reference or online Help.

Working With Seamless Tables

What is a Seamless Table?
Seamless tables allow you to group multiple tables together and treat them as a single table. Once you
have grouped your tables into a seamless table, you can add the entire group of tables to a Map
window very easily, simply by adding the seamless table (in the Layer Control dialog). For an
introduction to working with seamless tables, see the MapInfo User Guide.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 171 MB_UG.pdf

User Guide Chapter 8: Working With Tables
How Do Seamless Tables Work?
MapInfo includes a MapBasic program, Seamless Manager (seammgr.mbx), that allows you to create
and manipulate seamless tables. To see how a seamless table is composed, you need to turn the
table’s “seamless behavior” off, as follows:

1. Open a seamless table, such as DCMetroA.
2. Run the Seamless Manager application.
3. Choose Tools > Seamless Manager > Turn Seamless Off to turn off the seamless attribute for

the DCMetroA table.
4. Choose Window > New Browser Window to display the table in a Browser window.

Like ordinary tables, a seamless table has rows and columns. Each row corresponds to a base table
that is included in the seamless table.

The first column in a seamless table contains table names. The second column contains descriptions,
which appear in the user interface. The table names in the first column may contain directory paths.
You can omit the directory paths if the base tables are in the same directory as the seamless table, or if
the base tables can be located by the Search Directories path (which is specified as a Preference, in
the Directory Preferences dialog).

Every row in a seamless table has a map object attached to it, just as objects are attached to rows in
conventional tables. However, the objects in a seamless table are not intended for display. Each row in
a seamless table has a rectangle object, which defines the minimum bounding rectangle (MBR) for the
table named in the first column. When a user displays a seamless table in a Map window, MapInfo
compares the Map window’s current extents against the MBRs stored in the table. MapInfo only opens
the base tables when necessary (i.e., when the area currently visible in the Map window intersects the
table’s MBR).

MapBasic Syntax for Seamless Tables
Use the Set Table statement to turn a seamless table into a conventional table. For example, if you
want to edit the descriptions in a seamless table, you could issue the following statement:

 Set Table DCMetroA Seamless Off

and then edit the table’s descriptions in a Browser window.

Descriptions from the
second column . . .

. . . appear in this list
if the user browses
the seamless table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 172 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Call TableInfo(, TAB_INFO_SEAMLESS) to determine whether a table is a seamless table.

Call GetSeamlessSheet() to display a dialog box that prompts the user to choose one base table from
a seamless table.

Limitations of Seamless Tables
All of the base tables in a seamless table must have the same structure (i.e., the same number of
columns, the same column names, etc.).

Note that some MapInfo operations cannot be used on seamless tables. For example:

• You cannot simultaneously select objects from more than one base table in a seamless table.
• The MapBasic Find statement cannot search an entire seamless table; the Find statement

can only work with one base table at a time.
• You cannot make a seamless table editable in a Map window.
• You cannot create a thematic map for a seamless table.

Accessing DBMS Data

The preceding discussions showed you how to work with local MapInfo tables, tables on your hard
disk, or perhaps on a network file-server. This section describes how MapBasic can access DBMS
tables, such as Oracle or SQL Server databases.

MapBasic’s remote-data statements and functions all begin with the keyword Server, with the
exception of the Unlink statement. For details on the syntax, see the MapBasic Reference or online
Help.

How Remote Data Commands Communicate with a Database
MapInfo allows a MapBasic application to connect to multiple databases at one time and issue multiple
intermixed SQL statements. This is done through connection handles and statement handles.

Connection handles (or numbers) identify information about a particular connection. MapBasic defines
connection handles as variables of type integer (i.e., a connection number). An application receives a
connection handle upon connecting to a data source. The connection handle is used to associate
subsequent statements with a particular connection.

Statement handles (or numbers) identify information about an SQL statement. MapBasic defines
statement handles as variables of type integer (i.e., a statement number). An application must receive
a statement handle upon calling the Server_Execute() function to submit an SQL request. The
statement handle is used to associate subsequent SQL requests, like the Fetch and Close operations,
to a particular Select statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 173 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Connecting and Disconnecting
Before a MapBasic application can begin executing SQL statements to remote databases, it must
request a connection using the Server_Connect function. Once a successful connection is
established, the function returns a connection handle (hdbc) for use with subsequent SQL DataLink
calls.

Dim hdbc As Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)

When the driver performs a commit or rollback, it resets all statement requests associated with that
connection. The Driver Manager handles the work associated with switching connections while
transactions are in progress on the current connection.

Use the following statement to disconnect:

Server hdbc Disconnect

This statement closes the connection and frees all resources associated with it.

The following chart describes the sequence in which SQL MapBasic Server statements can be issued.
There are some statements that require no connection information (for example,
Server_NumDrivers()), some that require only a connection handle (for example, Server Commit),
and some that require a statement handle (for example, Server Fetch).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 174 MB_UG.pdf

User Guide Chapter 8: Working With Tables
[

You can download an entire table, some rows and columns, or a result set from an ODBC data source
using the Into feature of the MapBasic statement Server Fetch. However, any updates applied to the
downloaded table are not applied back to the server database table. Updating remote databases is
accomplished by the Save File statement.

Accessing/Updating Remote Databases with Linked Tables

A linked table is a special kind of MapInfo table that retains links to a remote database. Edits can be
made over multiple MapInfo sessions. Because the linked table updates are occurring outside of an
RDBMS transaction, other RDBMS users can update the same rows in the same tables. An optimistic
concurrency control mechanism is used to prevent data corruption. Concurrency control is
accomplished with the Automatic/Interactive clause of the Commit Table statement. When the data

These statements do not need
 any connection information:

Server_NumDrivers()
Server_DriverInfo()

Call this function to get a connection
h dlhdbc=Server_Connect(toolkit,connect_string)

These statements need a valid
connection handle.
Server hdbc Begin Transaction
Server hdbc Commit
Server hdbc Rollback

Call this statement to close a
tiServer hdbc Disconnect

Call this function to get a statement
h dlhstmt=Server_Execute(hdbc,sql_string)

These statements need a valid
statement handle.
Server hstmt Bind Column
Server hstmt Fetch
Server_EOT(hstmt)
Server_NumCols(hstmt, ...)
Server_ColumnInfo(hstmt, ...)

Close this statements to close
a statement handle.
Server hstmt Close
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 175 MB_UG.pdf

User Guide Chapter 8: Working With Tables
is saved, a connection with the remote database is re-established, editing conflicts are resolved, and
the changed data is written to the RDBMS. A linked table is created with the MapBasic statement
Server Link Table.

Linked tables contain information to re-establish connections and identify the remote data to be
updated. This information is stored as metadata in the tab file.

An unedited linked table can be refreshed with current data from the remote database without
respecifying the connection data, query, and table. A linked table is refreshed with the MapBasic
statement Server Refresh.

A linked table can be unlinked with the MapBasic statement Unlink. Unlinking a table removes the link
to the remote database. The end product is a normal MapInfo base table.

Using MapInfo’s spatial indexing, users will be able to store and retrieve points in any database; or
spatial objects in supported spatial objects. See Appendix E, Making A Remote Table Mappable.

Live Access to Remote Databases
You can access data live from remote databases with the Register Table statement. When you specify
the Type as ODBC, the Register Table statement tells MapInfo to examine the ODBC table and build
a corresponding table file (filename.TAB).

Performance Tips for Table Manipulation

Minimize Transaction-File Processing
Ordinarily, when a user edits a MapInfo table, MapInfo stores the edits in a temporary file known as a
transaction file. As the user performs more and more edits, the transaction file grows larger. A large
transaction file can slow down some operations, therefore, if your MapBasic program performs table
editing, you may want to take one of the following steps to prevent the transaction file from growing too
large:

• Save your edits (i.e., perform a Commit statement) regularly. For example, you might set up
your program so that it performs a commit after every 100 edits. Saving your edits empties out
the transaction file.

• Use a Set Table ... FastEdit statement to turn on FastEdit mode. In FastEdit mode, edits are
saved immediately to a table, instead of being stored in a transaction file. For details, see the
MapBasic Reference or online Help. See also: Set Table ... Undo Off.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 176 MB_UG.pdf

User Guide Chapter 8: Working With Tables
Use Indices Where Appropriate
Some queries are faster if you index one or more columns in your table. For example, Select
statements can be faster if you index the columns used in Where, Order By, or Group By clauses.
However, you may not want to index every single column in your table. Indexing every column can slow
down some operations because MapInfo must spend more time maintaining indices. If your application
performs intensive table manipulation that does not involve queries, you may be able to improve speed
by doing the following:

1. Delete the indices from your table (using the Drop Index statement).
2. Perform table edits as necessary.
3. Save your edits.
4. Use the Create Index statement to re-create the indices.

This strategy can speed up heavy-duty table manipulation, because MapInfo no longer needs to
maintain indices during the editing operations.

Using Sub-Selects
The Select statement can include a Where clause that performs a sub-select, as described in the
MapBasic Reference. However, you may find it faster to perform two non-nested Select statements,
instead of one nested Select ... Where (Select ...) statement.

If you perform a sub-select of this type:

... Where x = Any(Select ...) ...

then MapInfo does optimize the query performance, but only if column x is indexed.

Optimized Select Statements
Some types of Select queries are optimized for fast performance. See Select in the MapBasic
Reference or online Help.

Using Update Statements
MapBasic allows you to update map objects one at a time, by performing an Alter Object statement
and then an Update statement on individual rows, often within a loop. However, this type of table
manipulation can be very slow, because you are issuing several statements for every row that you
modify.

In some cases, you can obtain much faster performance by issuing a single Update statement that
affects an entire table, rather than updating one row at a time. For an example, see the topic “Updating
Symbols Quickly” in the MapBasic online Help.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 177 MB_UG.pdf

9
File Input/Output
In MapBasic, there is an important distinction between managing files and
managing MapInfo tables. The preceding chapter describes how
MapBasic lets you manage tables. This chapter describes how you
manage files that are not tables.

Sections in this Chapter:

Overview of File Input/Output . 179
Sequential File I/O . 180
Platform-Specific & International Character Sets 182

User Guide Chapter 9: File Input/Output
Overview of File Input/Output

File input/output (usually abbreviated file i/o) is a process of reading information from files (input) and/
or writing information to files (output). The MapBasic language provides a set of standard BASIC input/
output statements and functions to let you read and/or write text or binary files. Furthermore, because
MapInfo and MapBasic are designed to accommodate different hardware platforms, MapBasic’s file i/o
statements provide mechanisms that let you ensure seamless sharing of data.

There are three different types of file access: sequential, random, and binary. Which mode you should
use depends on the nature of the data in the file(s) you need to access. The three modes are
summarized below:

• Use sequential file i/o to read text from variable-length text files. For example, if one line of a
text file is fifty characters long, and subsequent lines in the text file are longer or shorter than
fifty characters, then the file is variable-length. Use sequential file i/o for accessing such files.

• Use random file i/o to read from text files that are fixed-length. If every line in a file is exactly
80 characters long, the file is fixed-length, and you can access the file using random file i/o.

• Use binary file i/o to access binary (non-text) file data. If you use binary file i/o to store data in
a file, MapInfo stores numeric data in an efficient storage format. Binary files containing
numerical data cannot be viewed or edited in a text editor, however, they provide a more
efficient format for storing numerical data than text files.

Regardless of which type of file i/o you will perform, the first step to performing file i/o is to open the file
you want to use. In MapBasic, you open a file using the Open File statement. This statement has
several optional clauses; which clauses you need to use depends on your specific situation. The
following statement opens a text file for sequential input:

Open File ”settings.txt” For Input As #1

When you open a file, you specify a file number; in the example above, the number is one. Later
statements in your program refer to the same number that you specified in the Open File statement.
For example, to read text from the file into a String variable, you could issue a Line Input statement,
and the Line Input statement would refer to the same file number (#1) as the Open File statement:

Line Input #1, s_nextline

If you need to have two or more files open at the same time, make sure that each file is opened under
a different number.

In some situations, you may need to create a new file in which to store your data. To create a new file,
issue an Open File statement that includes the For Output clause:

Open File ”workfile.txt” For Output As #2

Alternately, you can specify For Append in the Open File statement. With Append mode, MapBasic
creates the file if it does not already exist, or MapBasic lets you append data to the file if it already does
exist. When you are finished reading from or writing to a file, issue a Close File statement. For
example:

Close File #1
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 179 MB_UG.pdf

User Guide Chapter 9: File Input/Output
The number parameter is the same identification number assigned to the file in the Open File
statement. The pound sign (#) is optional. You do not need to execute a “save” command to save a file
that was created or modified through file input/output. You are done modifying the file as soon as you
issue the Close File statement. (MapBasic does provide a Save File statement, but its purpose is to
let you copy a file, not save changes to a file.)

There are many ways in which programs can generate runtime errors during file i/o. If the Open File
statement specifies the wrong file name, or if you attempt to open a file for output, but the file is flagged
as read-only, a runtime error will occur. If your program writes data to a file, the program could generate
a runtime error if the program runs out of disk space. If you try to open a file for output, but that file is
currently being modified by another network user, your program will generate a runtime error. If you are
developing an application that performs file input/output, you should build error-handling routines into
your program to detect and correct error conditions, and you should test your application under
conditions likely to cause problems (for example, out of disk space). For information on how to create
an error handler, see Chapter 5.

In some circumstances, you can prevent errors from happening by calling appropriate functions. For
example, before you issue an Open File statement, you can call the FileExists() function to determine
whether the file exists. Also, if your program needs to create a temporary, working file, but you do not
know what name or directory path to assign to the file (because you do not know the names of your
users’ directories), call the TempFileName$() function. Other statements that are related to file i/o:

• The Kill statement deletes a file.
• The Save File statement saves a copy of a file.
• The Rename File statement changes the name of a file.
• Functions such as ProgramDirectory$(), HomeDirectory$() and ApplicationDirectory$()

let you determine different directory paths at runtime. For example, to build a string
representing the name of a file that exists in the MapInfo directory (for example, the Startup
workspace), when you do not know the name of the directory, call ProgramDirectory$(), to
determine where MapInfo is installed.

Sequential File I/O

If you intend to perform sequential file i/o (reading/writing of variable-length text files), there are three
different options you can specify in the Open File statement’s For clause: Input, Output, or Append.

Use the For Input clause if you intend to read from an existing file. For example, the Named Views
sample program (nviews.mb) issues the following statement to open an existing text file for input:

Open File view_file For Input As #1

The string variable view_file contains the name of a text file.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 180 MB_UG.pdf

User Guide Chapter 9: File Input/Output
After you open a file for Input, you can read from the file using either the Input # statement or the Line
Input # statement. The Line Input # statement reads an entire line from the file into a String variable.
With the Input # statement, you can treat each line of text as a comma-separated list of values, and
read each value into a separate variable. For example, the Named Views application reads data that is
formatted in the following manner:

”New York”, -75.75, 42.83, 557.5
”Texas”, -100.2, 31.29, 1200

Each line of the text file contains four values: a name, an x-coordinate, a y-coordinate, and a zoom
distance. The Named Views application uses the following Input # statement to read each line into four
separate variables:

Input #1, vlist(tot).descript,
 vlist(tot).x,
 vlist(tot).y,
 vlist(tot).zoom

The vlist variable is an array of custom type variables.

When you read data sequentially, you need to test to see whether each read was successful. After your
program has read the entire contents of the file, if you attempt to read further the read operation will
fail. To test whether a read operation was successful, call the EOF() function (end-of-file) after each
input operation. If the EOF() function returns a value of FALSE, then you have not yet exhausted the
contents of the file (which means that your read was successful). When the EOF() function returns
TRUE, you are at the end of the file.

Note: Reading the last line of the file does not cause the end-of-file condition. The EOF() function
will only return TRUE after you have attempted to read past the end of the file.

To create a file that contains a comma-separated list of expressions, issue an Open File statement
with the For Output clause or the For Append clause. After opening the file, use the Write #
statement to write data to the file. In the Write # statement, you can specify a comma-separated list of
expressions to be written to each line in the file. For example, the Named Views application issues the
following Write # statement (within a loop) to create a file with the four values (name, x, y, and zoom)
shown above:

Write #1, vlist(i).descript, vlist(i).x, vlist(i).y, vlist(i).zoom

The Write # statement encloses each string expression in double-quotation marks within the file, as
shown in the example above (“New York”...). In some situations, using the Write # statement may be
inappropriate, because you may not want text to be enclosed in quotation marks. To write text to a file
without quotation marks, use Print # instead of Write #.

If you want to read an entire line into one String variable, use the Line Input # statement. Use the Print
statement to create a file that can later be read using the Line Input # statement. For an example of
using Print # and Line Input # to read or write an entire line at once, see the sample program
auto_lib.mb. The auto_lib program reads and writes MapInfo workspace files (specifically, the startup
workspace file).

You cannot write to a sequential file that was initially opened for input and you cannot read from a
sequential file that was initially opened for output.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 181 MB_UG.pdf

User Guide Chapter 9: File Input/Output
Random File I/O
To perform random-access file i/o, specify the For Random clause in the Open statement:

Open File ”datafile.dat” For Random As #1 Len = 80

When you open a file in Random mode, you include a Len clause that indicates the number of bytes in
each line in the file. Note that any text file contains end-of-line terminators; invisible characters that are
embedded in the file to mark the end of each line. The line length specified in the Len clause (80 in the
example above) specifies the exact number of characters in each record, including any end-of-line
terminators (for example, carriage-return/line-feed characters).

After you have opened a file for random access, you can read from or write to the file using the Get and
Put statements; see the MapBasic Reference.

Binary File I/O
Binary files are files that contain numeric values stored in binary format. The following statement
demonstrates how to open a file for binary access:

Open File ”settings.dat” For Binary As #1

After you have opened a file for binary access, you can read from or write to the file using the Get and
Put statements; see the MapBasic Reference.

Numerical data stored in binary format is stored very efficiently. For example, each Integer value is
stored using exactly four bytes of the file, regardless of how large the Integer value is. By contrast, if an
Integer value is nine digits long (for example, 111,222,333), and you store the value in a text file, the
value will occupy nine bytes of the file. Binary storage provides a more efficient format for the storage
of non-text data. However, if you need to be able to view your files in a text editor, you should store
your data in text files rather than binary files.

The records in a binary file can include character strings, but they must be of fixed length.

Platform-Specific & International Character Sets

If you encounter problems reading text files that originated on another hardware platform or in another
country, you may need to use the Open File statement’s optional CharSet clause. Every character on
a computer keyboard corresponds to a numeric code. For example, the letter “A” corresponds to the
character code 65. A character set is a set of characters that appear on a computer, and a set of
numeric codes that correspond to those characters.

Different character sets are used in different countries. For example, in the version of Windows for
North America and Western Europe, character code 176 corresponds to a degree symbol; however, if
Windows is configured to use another country’s character set, character code 176 may represent a
different character. The fact that different countries use different character sets may cause problems if
you need to read a file that originated in a different country.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 182 MB_UG.pdf

User Guide Chapter 9: File Input/Output
To correct character set-related misinterpretations, include a CharSet clause in your Open File
statement. The CharSet clause lets you explicitly state the character set with which the file was
originally created. If you include a CharSet clause which correctly identifies the file’s origin, MapInfo
will correctly interpret data while reading from (or writing to) the file. For a listing of character set names
that can be used in a CharSet clause, see CharSet in the MapBasic Reference.

File Information Functions
The following functions return information about an open file:

• FileAttr() returns the mode in which the file was opened (INPUT, OUTPUT, APPEND,
RANDOM, or BINARY).

• EOF() returns a logical TRUE if there has been an attempt to read past the end-of-file, or if the
file pointer has been placed past the end-of-file.

• Seek() returns the location in the file in offset bytes. On a RANDOM file, this is the number of
the last record used times the record length, not the record number alone.

• LOF() returns the length of the entire file in bytes.

Each of these functions uses the file number assigned in the Open File statement as an argument. For
more information, see the MapBasic Reference or online Help.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 183 MB_UG.pdf

10
Graphical Objects
Much of MapBasic’s power lies in its ability to query and manipulate map
objects — arcs, ellipses, frames, lines, points, polylines, rectangles,
regions, rounded rectangles, and text objects. This chapter discusses
how a MapBasic program can query, create, and modify the objects that
make up a map. Note, however, that you need to understand the
principles of MapInfo tables before you can understand how MapBasic
can store objects in tables. If you have not already done so, you may want
to read Chapter 8: Working With Tables before reading this chapter.

Sections in this Chapter:

Using Object Variables. 185
Using the “Obj” Column . 185
Querying An Object’s Attributes . 187
Creating New Objects. 193
Creating Objects Based On Existing Objects 196
Modifying Objects. 197
Working With Map Labels . 199
Coordinates and Units of Measure 203
Advanced Geographic Queries . 205

User Guide Chapter 10: Graphical Objects
Using Object Variables

MapBasic’s Object variable type allows you to work with both simple objects, like lines, and complex
objects, like regions. (Visual Basic programmers take note: MapBasic’s Object type represents
graphical shapes, not OLE objects.)

MapBasic Object variables can be treated much like other variables. You can assign values to object
variables, pass object variables as arguments to functions and procedures, and store the values of
object variables in a MapInfo table.

Use the Dim statement to define an object variable:

Dim Myobj, Office As Object

You do not have to specify the specific type of object that you want the variable to contain. An object
variable can contain any type of map or layout object.

Use the equal sign (=) to assign a value to an object variable, as shown in the next example:

Office = CreatePoint(73.45, 42.1)
Myobj = Office

You can assign objects from other object variables, functions that return objects, or table expressions
of the form tablename.Obj. However, there is no syntax for specifying a literal (“hard-coded”) object
expression.

An object variable holds all of the information that describes a map object. If you store a line object in
an object variable, the variable contains both geographic information about the line (for example, the
line’s starting and ending coordinates) and display information (the line’s color, thickness, and style).
MapBasic also provides four style variable types (Pen, Brush, Symbol, and Font) that can store styles
without storing object coordinates.

Using the “Obj” Column

The column named Obj is a special column that refers to a table’s graphical objects. Any table that
has graphical objects has an Obj column, although the Obj column typically does not appear in any
Browser window.

To access the contents of the Object column, use an expression of the form tablename.obj (or of the
form tablename.object). The following example declares an object variable (current_state), then
copies an object from the states table into the variable.

Dim current_state As Object
Open Table ”states”
Fetch First From states
current_state = states.obj

You can perform the same kinds of operations with object columns that you can with regular columns.
You can use SQL queries that reference the object column, Update the values (objects) in the column,
and read its contents into variables.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 185 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
The following statement creates a query table with state abbreviations and the area of each state; the
Obj column is used as one of the parameters to the Area() function:

Select state, Area(obj, ”sq mi”)
 From states

The next example creates a one-row table with the total miles of highway in California:

Select Sum(ObjectLen(obj, ”mi”))
 From highways
 Where obj Within (Select obj From states Where state = ”CA”)

Some rows do not contain map objects. For example, if you open a database file as a MapInfo table
and geocode the table, the geocoding process attaches point objects to the rows in the table. However,
if some of the rows were not geocoded, those rows will not have map objects. To select all the rows
that do not have objects, use the condition Not obj in the Select statement’s Where clause. The next
statement selects all rows that do not have map objects:

Select *
 From sites
 Where Not obj

Creating an Object Column
Not all tables are “mappable.” For example, if you base a table on a spreadsheet or database file, the
file initially cannot be displayed in a Map. To make the table mappable, you must use the Create Map
statement, which adds an object column to the table.

To remove the Object column from a table, use the Drop Map statement. Note that Drop Map removes
the object column completely. In some cases, you may want to delete individual objects from a table,
without deleting the entire Object column; this is sometimes referred to as “un-geocoding” a table. To
delete individual object values without removing the Object column, use the Delete Object statement.

To determine whether a table has an Object column, call the TableInfo() function with the
TAB_INFO_MAPPABLE code.

Limitations of the Object Column
Object columns have some restrictions that do not apply to other column types. For example, you can
only have one object column per table. When you perform a selection that joins two tables, and both
tables have object columns, the results table contains only one of the table’s objects (the objects from
the first table listed in the Select statement’s From clause).

The next example performs a query involving two mappable tables: the states table, and an outlets
table, which contains point objects representing retail outlets. The Select statement’s From clause lists
both tables. Because the states table is listed first, the results table will contain objects from the the
states table.

Select *
 From states, outlets
 Where states.state = outlets.state
Map From selection
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 186 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
If you list the outlets table first in the From clause, as shown below, the Select statement’s results table
will contain point objects (outlets), rather than state regions:

Select *
 From outlets, states
 Where outlets.state = states.state
Map From selection

Each row in a table can contain only one object. Note, however, that an individual object can contain
multiple parts. A region object can contain many polygons; thus, a group of islands can be represented
as a single region object. Similarly, a polyline object can contain many sections. To determine the
number of polygons in a region object or the number of sections in a polyline object, select the object,
and choose MapInfo’s Edit > Get Info command. To determine the number of sections or polygons from
within a program, call the ObjectInfo() function with the OBJ_INFO_NPOLYGONS code.

Querying An Object’s Attributes

A MapInfo table can contain a mixture of different types of objects. For example, a street map might
contain a mixture of lines and polylines. You can call the ObjectInfo() function with the
OBJ_INFO_TYPE code to determine the object’s type. For details, see ObjectInfo() in the MapBasic
Reference or online Help.

If you are using the MapBasic window interactively, there are various other ways you can display an
object’s type. For example, you could issue the following statements from the MapBasic window to
display a message describing the object’s type:

Fetch First From world
Note world.obj

The following statement selects all Text objects from a Layout window.

Select *
 From Layout1
 Where Str$(obj) = ”Text”

To determine information about an object’s geographic coordinates, call the ObjectGeography()
function. For example, call ObjectGeography() if you want to determine the x- and y-coordinates of the
end points of a line object. Determining coordinates of nodes in a polyline or region is more complex,
because polylines and regions have variable numbers of nodes. To determine coordinates of nodes in
a polyline or region, call ObjectNodeX() and ObjectNodeY().

To determine an object’s centroid, use the Centroid() function or the CentroidX() and CentroidY()
functions. To determine an object’s minimum bounding rectangle (the smallest rectangle that

encompasses all of an object), call the MBR() function.

To determine other types of object attributes, call the ObjectInfo() function. For example, after you
copy an object expression from a table into an Object variable, you can call ObjectInfo() to determine
the type of object (line, region, etc.), or call ObjectInfo() to make a copy of the object’s Pen, Brush,
Symbol, or Font style. If the object is a text object, you can use ObjectInfo() to read the string that
comprises the text object.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 187 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
Many of the standard MapBasic functions take objects as arguments, and return one piece of
information about the object as a return value. For example, the Area(), Perimeter(), and ObjectLen(
) functions take object parameters. The example below calculates the area of a flood zone:

Dim floodarea As Float
Open Table ”floodmap”
Fetch First From floodmap
floodarea = Area(floodmap.obj, ”sq km”)

Note that labels are not the same as text objects. To query a text object, you call functions such as
ObjectInfo(). To query a label, you call functions such as Labelinfo(). Labels are discussed later in
this chapter.

Object Styles (Pen, Brush, Symbol, Font)
Every object has one or more style settings. For example, every line object has a Pen style, which
defines the line’s color, thickness, and pattern (for example, solid vs. dot-dash), and every Point object
has a Symbol style, which defines the point’s shape, color, and size. Enclosed objects such as regions
have both a Pen style and a Brush (fill) style.

The following table summarizes the four object styles.

For detailed information on the four styles, see Brush clause, Font clause, Pen clause, and Symbol
clause in the MapBasic Reference and online Help.

Object Object Style

Pen Width, pattern, and color of a line

Brush Pattern, foreground color, and background color of a filled area

Font Font name, style, size, text color, background color; applies only to text objects

Symbol For MapInfo 3.0-style symbols: Shape, color, and size attributes.

For symbols from TrueType Fonts: Shape, color, size, font name, font style (for example,
bold, italic, etc.), and rotation attributes.

For custom symbols based on bitmap files: File name, color, size, and style attributes.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 188 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
The MapBasic language provides various statements and functions that allow you to create objects (for
example, the Create Text statement, the CreateLine() function, etc.). Each of the object creation
statements has optional clauses to let you specify the style(s) for that object. For example, the Create
Line statement includes an optional Pen clause that lets you specify the line’s style. If you issue an
object creation statement that does not specify any style settings, MapInfo assigns the current styles to
the object.

Note: You cannot use the = operator to compare two style values. For example, the following
program, which attempts to compare two Brush variables, will generate a runtime error.

Dim b1, b2 As Brush

b1 = MakeBrush(2, 255, 0)
b2 = CurrentBrush()

If b1 = b2 Then
 Note ”The two brush styles are equal.”
End If

If you need to compare two styles, use the Str$() function to convert each style into a string
expression. For example, the following statement compares two Brush values:

If Str$(b1) = Str$(b2) Then

If you need to compare specific elements of a style (for example, to see whether two Symbol styles
have the same point size), use the StyleAttr() function to extract individual style elements (color, etc.),
and then compare the individual elements.

Understanding Font Styles
Every text object has a Font style. A Font style defines the type face (for example, Times Roman vs.
Helvetica), text style (for example, bold, italic, etc.), and text color. A Font style also identifies how large
the text is, in terms of point size. However, the point size is sometimes ignored. The following list
summarizes how a Font’s point size affects different types of text.

• When you create a text object in a Layout window, the Font’s point size controls the text height.
If the Font style specifies 10-point text, the text object is defined with 10-point text. The text
might not display at 10 points, depending on whether you zoom in or out on the Layout; but
when you print the Layout, the text height will be 10 points.

• When you use the Create Text statement to create a text object in a mappable table, the
current font’s point size is ignored. In this situation, the text height is controlled by map
coordinates, which you specify in the Create Text statement. When you issue a Create Text
statement, you specify two pairs of x- and y-coordinates that define a rectangular area on the
map; the text object fills the rectangular area. Because of this design, text objects stored in a
mappable table will grow larger as you zoom in, and grow smaller as you zoom out.

• When you use the CreateText() function to create a text object in a mappable table, the
current font’s point size controls the initial size of the text. However, zooming in on the map will
cause the text to grow larger.

• When you create a label in a Map window, the Font’s point size controls the text height. The
text displays and prints at the height specified by the Font style. Note that labels behave
differently than text objects stored in a table. Labels are discussed later in this chapter.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 189 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
A Font style includes a font name, such as “Courier” or “Helvetica.” Font names may be different on
each hardware platform; for example, “Geneva” is a common font name on the Macintosh, but not on
other platforms. Helv and TmsRmn (or Times New Roman) in the Microsoft Windows environment are
called Helvetica and Times on Macintosh and Sun platforms. Helvetica, Times and Courier are
recognized in a MapBasic Font clause regardless of the platform that is in use at runtime.

Style Variables
MapBasic provides style variable types - Pen, Brush, Symbol, and Font - that correspond to object
style attributes. There are several ways you can assign a style to a style variable:

• Build a style expression by calling MakePen(), MakeBrush(), MakeFont(), MakeSymbol(),
MakeCustomSymbol(), or MakeFontSymbol(), and assign the value to the style variable.
These functions allow you to explicitly specify the desired styles. For example, the ScaleBar
sample program calls MakeBrush() to build black and white brush expressions, so that the
scale bar can have alternating blocks of black and white.

• Call CurrentPen(), CurrentBrush(), CurrentFont(), or CurrentSymbol(), and assign the
return value to the style variable. These functions read the current styles (i.e., the styles that
appear if you choose MapInfo’s Options > Line Style, Region Style, Symbol Style, or Text Style
command when there are no objects selected).

• Call ObjectInfo() to determine the style of an existing object, and assign the return value to a
style variable.

• Let the user choose a style through a dialog. If a dialog contains a PenPicker, BrushPicker,
SymbolPicker, or FontPicker control, the user can choose a style by clicking on the control. For
more information on dialogs, see Chapter 7: Creating the User Interface.

The following example demonstrates how to call the MakePen() function to construct a Pen style. The
Pen style value is assigned to a Pen variable.

Dim p_var as Pen
p_var = MakePen(1, 10, RGB(128, 128, 128))

The MakePen() function’s arguments define the pen style: 1 signifies that the style is one pixel wide,
10 signifies a pattern (dotted), and the RGB() function call specifies a color. For more information
about the three parameters that make up a pen style (including a chart of all available line patterns),
see Pen clause in the MapBasic Reference or online Help. Similarly, for more information about Brush,
Font, or Symbol options, see Brush clause, Font clause, or Symbol clause.

The following example demonstrates how to read an existing object’s Pen style into a Pen variable:

p_var = ObjectInfo(obj_var, OBJ_INFO_PEN)

Once you have stored a Pen expression in a Pen variable, you can use the Pen variable within an
object creation statement:

Create Line Into Variable obj_var
 (-73, 42) (-74, 43)
 Pen p_var

The function StyleAttr() returns one component of a particular style. For example, the TextBox sample
program displays a dialog that lets the user choose a pen style; the selected style is stored in the Pen
variable, pstyle. TextBox then issues the following statement to read the Pen style’s color component
into an Integer variable (line_color):

line_color = StyleAttr(pstyle, PEN_COLOR)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 190 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
Colors are stored internally as integer numbers. For instance, black is 0 and blue is 255. The RGB()
function calculates the color value from quantities of red, green, and blue that you specify. For
instance, the function call RGB(0, 255, 0) returns the color value for green.

Use the RGB() function where a color is called for. For example:

highway_style = MakePen(2, 2, RGB(0, 0, 255))

Alternately, instead of calling RGB() you can use one of the standard color definition codes (BLACK,
WHITE, RED, GREEN, BLUE, YELLOW, CYAN, and MAGENTA) defined in mapbasic.def.

Selecting Objects of a Particular Style
The ObjectInfo() function lets you extract a Pen, Brush, Symbol, or Font value from an object. Once
you have a Pen, Brush, Symbol or Font, you can call the StyleAttr() function to examine individual
elements (for example, to determine the color of a Symbol style).

You can use the Select statement to select objects based on styles. As the following example shows,
the Select statement’s Where clause can call the ObjectInfo() and StyleAttr() functions, so that
MapInfo selects only those objects that have certain attributes (for example, objects of a certain color).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 191 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
The following example adds a custom button to the Tools toolbar. If you select a point object and then
click the custom button, this program selects all point objects in the same table that have the same
color.

Include ”mapbasic.def”
Declare Sub Main
Declare Sub SelectPointsByColor()

Sub Main
 ’ Add a custom button to the Tools toolbar.
 Alter ButtonPad ”Tools” Add
 PushButton
 Calling SelectPointsByColor
 HelpMsg ”Select points of same color\nSelect By Color”
End Sub

Sub SelectPointsByColor
 Dim i_color, i_open As Integer
 Dim symbol_style As Symbol
 Dim object_name, table_name As String

 ’ Note how many tables are currently open.
 i_open = NumTables()

 ’ Determine the name of the table in use.
 table_name = SelectionInfo(SEL_INFO_TABLENAME)
 If table_name = ”” Then
 ’ ... then nothing is selected; just exit.
 Exit Sub
 End If
 ’ Exit if the selection is in a non-mappable table.
 If Not TableInfo(table_name, TAB_INFO_MAPPABLE) Then
 Exit Sub
 End If
 ’ See whether the selected object is a Point.
 ’ If it is a Point, determine its Symbol and Color.
 Fetch First From Selection
 object_name = Str$(Selection.obj)
 If object_name = ”Point” Then
 symbol_style = ObjectInfo(Selection.obj,OBJ_INFO_SYMBOL)
 i_color = StyleAttr(symbol_style, SYMBOL_COLOR)
 End If

 ’ Accessing ”Selection.obj” may have caused MapInfo to
 ’ open a temporary table called Query1 (or Query2...).
 ’ Let’s close that table, just to be tidy.
 If NumTables() > i_open Then
 Close Table TableInfo(0, TAB_INFO_NAME)
 End If

 If object_name <> ”Point” Then
 ’...the selected object isn’t a point; just exit.
 Exit Sub
 End If
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 192 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
’ Select all the rows that contain point objects.
 Select * From table_name
 Where Str$(Obj) = ”Point”
 Into Color_Query_Prep NoSelect

’ Select those point objects that have the same
’ color as the original object selected.
Select * From Color_Query_Prep
 Where
 StyleAttr(ObjectInfo(obj,OBJ_INFO_SYMBOL),SYMBOL_COLOR)
 = i_color
 Into Color_Query

 Close Table Color_Query_Prep

End Sub

This example works with point objects, but the same techniques could be used with other object types.
For example, to work with region objects instead, you would test for the object name “Region” instead
of “Point”, and call ObjectInfo() with OBJ_INFO_BRUSH instead of OBJ_INFO_SYMBOL, etc.

Creating New Objects

MapBasic contains a set of statements and functions through which you can create graphical objects.
This section provides an introduction to object-creation statements and functions; for more, see the
MapBasic Reference.

Object-Creation Statements
The following statements can be used to create new objects. All of the statements may be used to
create objects on Layout windows. All of the statements except for Create Frame may be used to
create objects on Map windows.

• Create Arc statement: Creates an arc.
• Create Ellipse statement: Creates an ellipse or a circle. (A circle is simply a special case of an

arc - an arc with equal width and height.)
• Create Frame statement: Creates a frame. Frames are special objects that exist only on

Layout windows; each frame can display the contents of an open window. Thus, if you want to
place two maps on your page layout, create two frames.

• Create Line statement: Creates a line.
• Create Point statement: Creates a point.
• Create Pline statement: Creates a polyline.
• Create Rect statement: Creates a rectangle.
• Create Region statement: Creates a region.
• Create RoundRect statement: Creates a rounded rectangle.
• Create Text statement: Creates a text object.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 193 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
• AutoLabel statement: This statement “labels” a Map window by drawing text objects to the
Cosmetic layer. This statement does not create labels, it creates text objects. To create labels,
use the Set Map statement.

Object-Creation Functions
The following MapBasic functions return object values:

• CreateCircle() function: returns a circle object.
• CreateLine() function: returns a line object.
• CreatePoint() function: returns a point object.
• CreateText() function: returns a text object.

In some ways, object-creation functions are more powerful than the corresponding object-creation
statements, because a function call can be embedded within a larger statement. For example, the
following Update statement uses the CreateCircle() function to create a circle object for every row in
the table:

Update sites
 Set obj = CreateCircle(lon, lat, 0.1)

This example assumes that the sites table has a lon column containing longitude values (x
coordinates) and a lat column containing latitude values (y coordinates).

Creating Objects With Variable Numbers of Nodes
Polyline objects and region objects are more complex than other objects in that polylines and regions
can have variable numbers of nodes (up to 32,763 nodes per object).

You can create a region object using the Create Region statement. In the Create Region statement,
you can explicitly state the number of nodes that the object will contain. However, there are situations
where you may not know in advance how many nodes the object should contain. For example, a
program might read object coordinates from a text file, then build a region object that contains one
node for each pair of coordinates read from the file. In that situation, the program cannot know in
advance how many nodes the object will contain, because the number of nodes depends on the
amount of information provided in the file.

If your program will create region or polyline objects, you may want to create those objects in two
steps:

1. Issue a Create Region statement or a Create Pline statement to create an empty object (an
object that has no nodes).

2. Issue Alter Object statements to add nodes to the empty object. The Alter Object statement
is usually placed within a loop, so that each iteration of the loop adds one node to the object.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 194 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
The following example demonstrates this process:

Include ”mapbasic.def”

Type Point
x As Float
y As Float

End Type

Dim objcoord(5) As Point
Dim numnodes, i As Integer, myobj As Object
numnodes = 3
set CoordSys Earth
objcoord(1).x = -89.213 objcoord(1).y = 32.017
objcoord(2).x = -89.204 objcoord(2).y = 32.112
objcoord(3).x = -89.187 objcoord(3).y = 32.096

Create Pline Into Variable myobj 0

For i = 1 to numnodes
 Alter Object myobj Node Add (objcoord(i).x,objcoord(i).y)
Next

Insert Into cables (obj) Values (myobj)

Storing Objects In a Table
After you create an object and store it in an Object variable, you usually will want to store the new
object in a table. The user will not be able to see the object unless you store the object in a table.

To store an object value in a table, use the Insert statement or the Update statement. Which statement
you should use depends on whether you want to attach the object to an existing row or create a new
row to store the object.

Use the Update statement to attach an object to an existing row in a table. If that row already has an
object, the new object replaces the old object. The Update statement can update any column in a
table; to update a row’s graphical object, refer to the special column name Obj.

For example, the following statement stores a point object in the Obj column of the first row in the Sites
table:

Update sites
 Set Obj = CreatePoint(x, y)
 Where RowID = 1

Use the Insert statement to add a new row to a table. Insert lets you add one row to a table at a time
or insert groups of rows from another table. The following statement inserts one new row into the Sites
table, and stores a line object in the new row’s Obj column:

Insert Into sites (Obj)
 Values (CreateLine(x1, y1, x2, y2))

The TextBox sample program demonstrates both the Insert statement and the Update statement. The
TextBox application draws a box (a rectangle object) around each selected text object; each box is
stored using an Insert statement. In addition, if the user checks the Change Text Color to Match Box
Color check box, the program also changes the color of the selected text object, and then uses an
Update statement to store the modified text object back in the table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 195 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
The Insert and Update statements are both powerful, flexible table-manipulation statements. In the
preceding examples, the statements operated only on one column (the graphical object column, Obj);
however, you can manipulate any column of your table using Insert and Update.

Creating Objects Based On Existing Objects

A MapBasic program can create new objects based on existing objects. This section provides an
introduction to various MapBasic statements and functions; for more information about a particular
statement or function, see the MapBasic Reference or online Help.

Creating a Buffer
A buffer region is a region representing the area within a certain distance of another object or objects.
Buffers are useful for locating objects within a certain distance of other objects. For instance, you can
create a buffer around a fiber optic cable to find all the dig sites within three hundred meters of the
cable. You can use the Create Object statement to create buffer regions.

The following example creates a 300-meter buffer region around the selected segment of cable, then
searches for dig locations within the buffer:

Dim danger_zone As Object

Create Object As Buffer
 From selection
 Into Variable danger_zone
 Width 300 Units ”m”

Select * From dig_sites Where dig_site.obj Within danger_zone

MapBasic also provides a Buffer() function, which returns an object value representing a buffer
region.

Using Union, Intersection, and Merge
The Create Object statement also can calculate unions and intersections of regions. If you specify
Create Object As Merge, MapInfo removes common segments from two or more neighboring regions,
producing a single, combined region. When two regions with a common border are merged (for
example, Nevada and California), the resulting region covers the total area of both regions. The border
between the neighboring regions is removed.

The following example demonstrates how to combine two regions from the states table:

Select *
 From states
 Where state =”CA” Or state = ”NV”

Create Object As Merge
 From selection
 Into Table territory
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 196 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
The Merge operation is an exclusive-or (XOR) process. If you merge two region objects, and one of
the objects is completely contained within the other object, the merge operation removes the smaller
object’s area from the larger object, leaving a hole.

Merge creates a new object. The two merged regions still exist in the source table. You may want to
remove the two original regions, as shown below:

Select * From Territory Where TerrName = ”Western Territory” or TerrName = ”NV”
Delete From selection

Create Object As Union and Create Object as Intersection let you create a region that represents
logical combinations of two or more regions. These statements are different from Merge because they
work with all of the segments of the source regions, not just the common segments. A Union is the total
area of all polygons. An Intersection is the overlapping area. The object created by a union or an
intersection may contain new nodes that don’t appear in the original regions. MapBasic also provides a
Combine() function, which returns the object produced by combining two other objects.

Creating Offset Copies
A group of Offset functions and statements can be use to produce new objects that are offset from the
initial objects by specified units.

The following statements can be used to create offset copies of existing objects.

• Offset() function: returns a copy of initial object offset by specified distance and angle.
• OffsetXY() function: returns a copy of initial object offset by a specified distance along the X

and Y axes.
• SphericalOffset() function: returns a copy of initial object by a specified distance and angle.

The Distance Type used must be Spherical.
• SphericalOffsetXY() function: returns a copy of initial object by a specified distance and

angle. The Distance Type used must be Spherical.
• CartesianOffset() function: returns a copy of initial object by a specified distance and angle.

The Distance Type used must be Cartesian.
• CartesianOffsetXY() function: returns a copy of initial object by a specified distance and

angle. The Distance Type used must be Cartesian.

Modifying Objects

General Procedure for Modifying an Object
MapBasic provides many statements that you can use to modify an existing map object. Regardless of
which statement you use to modify an object, the process of modifying an object is as follows:

1. Make a copy of the original object. (Often, this involves declaring an object variable, issuing a
Fetch statement to position the row cursor, and issuing an assignment statement of the form
variable_name = tablename.obj).

2. Issue statements or functions to modify the object. (This often involves issuing one or more
Alter Object statements.)

3. Issue an Update statement to store the modified object back in the table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 197 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
The TextBox program demonstrates this process. If the user checks the Change Text Color to Match
Box Color check box, the TextBox program uses an Alter Object statement to change the color of the
selected object, and then uses an Update statement to store the altered text object back in the table.

Repositioning An Object
Use the Objects Move statement to move objects a specified distance along the positive X axis. You
can also specify the Distance Units and Distance Type. Use the Objects Offset statement to make a
new copy of objects offset a specified distance along the positive X axis. You can also specify the
Distance Units and Distance Type and specify whether the copied objects are placed in the same table
as the source objects or into a different table.

Moving Objects and Object Nodes
To modify an object’s coordinates, issue an Alter Object statement that includes a Geography clause.
You may need to issue more than one Alter Object statement (one statement to reset the object’s x-
coordinate, and another statement to reset the y-coordinate).

Modifying An Object’s Pen, Brush, Font, or Symbol Style
The Alter Object statement lets you modify an object’s style. The example below uses the Alter
Object command to change a selected object in a table:

Include ”mapbasic.def”
Dim myobj As Object, mysymbol As Symbol
mysymbol = CurrentSymbol()
Fetch First From selection
myobj = selection.obj
If ObjectInfo(myobj, OBJ_INFO_TYPE) = OBJ_POINT Then
 Alter Object myobj
 Info OBJ_INFO_SYMBOL, mysymbol
 Update selection Set obj = myobj Where RowID = 1
Else
 Note ”The selected object is not a point.”
End If

• To modify the height of a text object that appears on a Layout window, change the object’s
Font style (by issuing an Alter Object statement with an Info clause).

• To modify the height of a text object that appears on a Map window, change the object’s x- and
y-coordinates (by issuing an Alter Object statement with a Geography clause).

• To modify the height of a map label, issue a Set Map statement.

Converting An Object To A Region or Polyline
To convert an object to a region object, call the ConvertToRegion() function. To convert an object to a
polyline object, call the ConvertToPline() function. For more information on these functions, see the
MapBasic Reference or online Help.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 198 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
Erasing Part Of An Object
The following statements and functions allow you to erase part of an object:

• The Overlap() function takes two object parameters, and returns an object value. The
resulting object represents the area where the two objects overlap (the intersection of the two
objects).

• The Erase() function takes two object parameters, and returns an object value. MapInfo
erases the second object’s area from the first object, and returns the result.

• The Objects Intersect statement erases the parts of the current target objects that are not
covered by the currently-selected object.

• The Objects Erase statement erases part of the currently-designated target object(s), using
the currently-selected object as the eraser.

The Objects Erase statement corresponds to MapInfo’s Objects > Erase command, and the Objects
Intersect statement corresponds to MapInfo’s Objects > Erase Outside command. Both operations
operate on the objects that have been designated as the “editing target.” The editing target may have
been set by the user choosing Objects > Set Target, or it may have been set by the MapBasic Set
Target statement. For an introduction to the principles of specifying an editing target, see the MapInfo
Professional User Guide.

Points Of Intersection
As mentioned earlier, you can add nodes to a region or polyline object by issuing an Alter Object
statement. However, the Alter Object statement requires that you explicitly specify any nodes to be
added. If you want to add nodes at the locations where two objects intersect, use the Objects Overlay
statement or the OverlayNodes() function.

Call the IntersectNodes() function to determine the coordinates of the point(s) at which two objects
intersect. IntersectNodes() returns a polyline object containing a node at each point of intersection.
Call ObjectInfo() to determine the number of nodes in the polyline. To determine the coordinates of the
points of intersection, call ObjectNodeX() and ObjectNodeY().

Working With Map Labels

A map label is treated as a display attribute of a map object. However, MapInfo still supports the
AutoLabel statement to provide backwards compatibility with older versions of the product in which
map labels were text objects in the Cosmetic layer.

Turning Labels On
A MapInfo user can configure labeling options through the Layer Control dialog box. A MapBasic
program can accomplish the same results through the Set Map ... Label statement. For example, the
following statement displays labels for layer 1:

Set Map Layer 1 Label Auto On Visibility On
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 199 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
Turning Labels Off
In the Layer Control dialog, clearing the Label check box (in the list of layers) turns off the default labels
for that layer. This MapBasic statement has the same effect:

Set Map Layer 1 Label Auto Off

Note: The Set Map ... Auto Off statement turns off default (automatic) labels, but it does not affect
custom labels (labels that were added or modified by the user). The following statement
temporarily hides all labels for a layer — both default labels and custom labels:

Set Map Layer 1 Label Visibility Off

A MapInfo user can reset a layer’s labels to their default state by choosing Map > Clear Custom
Labels. This MapBasic statement has the same effect:

Set Map Layer 1 Label Default

Editing Individual Labels
MapInfo users can edit labels interactively. For example, to hide a label, click on the label to select it,
and press Delete. To move a label, click the label and drag.

To modify individual labels through MapBasic, use a Set Map ... Label statement that includes one or
more Object clauses. For example, the following statement hides two of the labels in a Map window:

Set Map Layer 1 Label
 Object 1 Visibility Off
 Object 3 Visibility Off

For each label you want to customize, include an Object clause. In this example, Object 1 refers to the
label for the table’s first row, and Object 3 refers to the label for the table’s third row. To save custom
labels, save a workspace file; see the MapBasic Save Workspace statement.

CAUTION: Packing a table can invalidate custom (edited) labels previously stored in
workspaces. When you store edited labels by saving a workspace, the labels are
represented as Set Map ... Object ... statements. Each Object clause refers to a row
number in the table. If the table contains rows that have been marked deleted (i.e.,
rows that appear grayed out in a Browser window), packing the table eliminates the
deleted rows, which can change the row numbers of the remaining rows.

In other words, if you pack a table and then load a previously-saved workspace, any edited labels
contained in the workspace may be incorrect. Therefore, if you intend to pack a table, you should do so
before creating custom labels.

If the only deleted rows in the table appear at the very end of the table (i.e., at the bottom of a Browser
window), then packing the table will not invalidate labels in workspaces.

Querying Labels
Querying a Map window’s labels is a two-step process:

1. Initialize MapBasic’s internal label pointer by calling LabelFindFirst(), LabelFindByID(), or
LabelFindNext().

2. Call Labelinfo() to query the “current” label.

For an example, see Labelinfo() in the MapBasic Help, or see the sample program, LABELER.MB.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 200 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
Other Examples of the Set Map Statement
To see the MapBasic syntax that corresponds to the Layer Control dialog, do the following:

1. Open the MapBasic window.
2. Make a Map window the active window.
3. Choose Map > Layer Control to display the Layer Control dialog box.
4. Select the desired options, and click OK.

MapInfo applies your changes, and displays a Set Map statement in the MapBasic window. You can
copy the text out of the MapBasic window and paste it into your program.

To see the MapBasic syntax that corresponds to editing an individual label, do the following:

1. Modify the labels in your Map window. (Move a label, delete a label, change a label’s font, etc.)
2. Save a workspace file.
3. View the workspace file in a text editor, such as the MapBasic editor. Edits to individual labels

are represented as Set Map ... Layer ... Label ... Object statements in the workspace.

Differences Between Labels and Text Objects
The following table summarizes the differences between text objects and labels.

Text objects Labels

MapBasic statements
used to create the text:

AutoLabel, Create Text,
CreateText()

Set Map

MapBasic statements
used to modify the text:

Alter Object Set Map

MapBasic functions used
to query the text (for
example, to
determine its color):

ObjectInfo(),
ObjectGeography()

LabelFindByID(),
LabelFindFirst(),
LabelFindNext(),
Labelinfo()

MapBasic statement
used to select the text:

Select MapBasic programs cannot select
labels.

Saving text in a Map: Text objects can be stored in
mappable tables.

Labels are only stored in
workspaces.

Saving text in a Layout: Text objects created in a
Layout can be saved in a
workspace.

Not applicable. Labels
cannot appear in layouts (except
when a map is in a layout).

Controlling the text
height:

Text height is affected by the
current map scale. Text
grows larger as you zoom in,
and smaller as you zoom out.

A label's text height is controlled by
its font. Zooming in or out does not
affect a label's text height.

Converting between text
and labels:

Not applicable. Given a text
object, there is no MapBasic
function that returns a Label.

Given a label, the
Labelinfo() function can return a
text object that approximates the
label. See LABELER.MBX for an
example.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 201 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
When you create a label, you specify the label’s anchor point (in x- and y-coordinates). For example, if
you are viewing a map of the World table, this statement creates a label that acts as a title:

Set Map Layer 1 Label Object 1
 Visibility On ’show this record’s label
 Anchor (0, 85) ’anchor the label at this (x,y)
 Text ”Map of World” ’set label’s text
 Position Center ’set position relative to anchor
 Font(”Arial”,289,20,0) ’set font style (20-point, etc.)

The resulting label can act as a map title.

If you need to place text on your map, you may find it easier to create labels, rather than text objects.
You could create a table whose sole purpose is to be labeled, using this procedure:

1. Create a table (using the Create Table statement) that contains a character column. Make the
character column wide enough to store the text that you want to appear on the map. Make the
table mappable (using the Create Map statement).

2. Add the table to your Map window (using the Add Map statement). Use the Set Map statement
to set the table’s labeling options (font, Auto On, etc.).

3. When you want to add text to the map, insert a point or line object into the table, using an
invisible symbol style (shape 31) or invisible pen style (pattern 1). The object will not be visible,
but its label will appear. (Use line objects if you want the text to be rotated. Note: The sample
program COGOLine.mb demonstrates how to create a line object at a specific angle.)

Note: With this strategy, you do not need to use Set Map ... Object statements to customize each
label’s position. You can display labels at their default positions. Then, if you want to move a
label, move the object that corresponds to the label.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 202 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
Coordinates and Units of Measure

A MapBasic application can work in only one coordinate system at a time. MapBasic uses Earth
coordinates, non-Earth coordinates, or Layout coordinates. The fact that MapBasic has a current
coordinate system gives rise to the following programming guidelines:

• Before you create, modify, or query objects from an Earth map, make sure that MapBasic is
working in an Earth coordinate system. This is the default. With many MapBasic applications
you do not need to worry about coordinate systems.

• Before creating, modifying, or querying objects from a non-Earth map, make sure that
MapBasic is working in a non-Earth coordinate system. To do this, issue a Set CoordSys
Nonearth statement.

• Before creating, modifying, or querying objects from a Layout window, make sure that
MapBasic is working in a Layout coordinate system. To do this, issue a Set CoordSys Layout
statement.

Each MapBasic application has a CoordSys system setting that represents the coordinate system
currently in use by that application. The default coordinate system setting is the Earth (longitude,
latitude) system. By default, every MapBasic application can work with objects from Earth maps, and
most MapInfo tables fall into this category. If a MapBasic application needs to work with objects on a
Layout window, you must first issue a Set CoordSys Layout statement, as follows:

Set CoordSys Layout Units ”in”

The Set CoordSys Layout statement lets you specify a paper unit name, such as “in” (inches). This
dictates how MapBasic will interpret Layout window coordinate information. To work in centimeters or
millimeters, specify the unit name as cm or mm respectively. The following program opens a Layout
Window, then places a title on the layout by creating a text object. Since the object is created on a
Layout window, the Create Text statement is preceded by a Set CoordSys Layout statement.

Include ”mapbasic.def”

Dim win_num As Integer
Layout
win_num = FrontWindow()
Set CoordSys Layout Units ”in”

Create Text
 Into Window win_num
 ”Title Goes Here”
 (3.0, 0.5) (5.4, 1.0)
 Font MakeFont(”Helvetica”, 1, 24, BLUE, WHITE)

In the example above, the Layout coordinate system uses inches as the unit of measure. All of the
coordinates specified in the Create Text statement represent inches. After you change the coordinate
system through the Set CoordSys statement, the new coordinate system remains in effect until you
explicitly change it back. Every MapBasic application has its own coordinate system setting. This
allows one application to issue a Set CoordSys statement without interfering with any other
applications that are running.

The MapBasic coordinate system is independent of the coordinate system used by any MapInfo Map
window. The default coordinate system is latitude/longitude (NAD 1927) (represented by decimal
degrees, not degrees, minutes and seconds.)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 203 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
All coordinates specified in MapBasic statements or functions should be in latitude and longitude
unless you change the MapBasic coordinate system with the Set CoordSys statement. For example,
the function Centroidx() returns the longitude of an object’s centroid in decimal degrees, by default,
even if the object is stored in a table or a window that has been assigned a different coordinate system.
For example, the selection resulting from the statement below has the values: WY -107.554 43, the
longitude and latitude of the centroid of Wyoming:

Select state, CentroidX(obj), CentroidY(obj)
 From states
 Where state = ”WY”

After the following statements are executed, the selection contains: WY -934612.97 2279518.38; the
coordinates reflect an Albers projection.

Set CoordSys Earth Projection 9, 62, ”m”, -96, 23, 29.5, 45.5, 0, 0
Select state, CentroidX(obj), CentroidY(obj)
 From states
 Where state = ”WY”

To reset the MapBasic coordinate system to its default, issue the following statement:

Set CoordSys Earth

Units of Measure
MapBasic programs deal with the following units of measure:

• Area units, such as square miles and acres, represent measurements of geographic areas.
For a complete list of the area units supported by MapBasic, see Set Area Units in the
MapBasic Reference. Because different area units are supported, functions such as Area()
can return results in whatever units are appropriate to your application.

• Distance units, such as kilometers and miles, represent measurements of geographic
distance. For a list of distance units supported by MapBasic, see Set Distance Units in the
MapBasic Reference.

• Paper units, such as inches or centimeters, represent non-geographic distances. For example,
if you issue a Set Window statement to reset the width or height of a Map window, you specify
the window’s new size in paper units, such as inches (on the screen).

At any point during a MapInfo session, there is a current distance unit, a current area unit, and a
current paper unit. The default units are miles, square miles, and inches, respectively. The effect of
default units is best illustrated by example. The following statement creates a circle object:

obj_var = CreateCircle(x, y, 5)

Because MapBasic’s default distance unit is miles, the circle object will have a radius of five miles.
However, if you reset the distance unit by issuing a Set Distance Units statement, the meaning of the
radius parameter (5) changes. Thus, the following example creates a circle object with a radius of 5
kilometers:

Set Distance Units ”km”
obj_var = CreateCircle(x, y, 5)

To reset the current area unit or the current paper unit, use the Set Area Units statement or the Set
Paper Units statement, respectively.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 204 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
Advanced Geographic Queries

MapBasic programs can perform complex data queries that take both tabular and graphical data into
account. For example, your program can use the Add Column statement to calculate totals and
averages of data values within a region, based on how the region object overlaps and intersects
objects in other map layers.

To understand how MapBasic and MapInfo can perform data-driven geographic analysis, you must
understand how MapBasic programs can manage and query tables. If you have not already done so,
you may want to read Chapter 8: Working With Tables before reading this section.

Using Geographic Comparison Operators
MapBasic does not allow you to use the equal operator (=) to perform logical comparisons of objects (If
object_a = object_b). However, MapBasic does provide several geographic operators that let you
compare objects to see how they relate spatially. The MapBasic comparison operators Contains,
Within, and Intersects and the optional modifiers Part and Entire allow you to compare objects in
much the same way as the relational operator can be used with numbers.

Below is an example of a geographic comparison in an If...Then statement:

If Parcel_Object Within Residential_Zone_Obj Then
 Note ”Your Property is zoned residential.”
End If

The example below illustrates a geographic comparison in a Select statement:

Select * From wetlands
 Where obj Contains Part myproject

At least one of the objects used in a Within and Contains condition should be an object that
represents an enclosed area: regions, ellipses, rectangles, or rounded rectangles.

Whether you use Within or Contains depends on the order of the objects in the expression. The rule is
as follows:

• Use Within to test whether the first object is inside the second object.
• Use Contains to test whether the first object has the second object inside of it.

For example, when comparing points with regions:

The following statement selects the state(s) containing a distribution center object:

Select * From states
 Where obj Contains distribution_ctr

The next statement selects all of the landfills within a county:

Select * From landfill
 Where obj Within county_obj

Points are Within regions.

Regions Contain points.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 205 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
The Within operator and the Contains operator test whether the centroid of an object is inside the
other object. Use Entire(ly) to test whether the whole object is inside another object. Use Part(ly) to
test whether any part of an object is within the other object.

The next statement selects all sections of a highway with any part going through a county:

Select * From highway
 Where obj Partly Within countyobj

The Partly Within operator tests whether any portion of the first object is within the other object or
touching it at any point. You also can use the Entirely Within operator to test if all of an object is within
the area of another object. Since checking all of the segments of an object involves more calculations
than checking only the centroid, conditions that involve the Partly modifier or the Entirely modifier
evaluate more slowly.

The Intersects operator can be used with all types of objects. If any part of an object crosses, touches,
or is within the other object, the objects intersect. Regions that touch at one corner intersect. A point on
a node of a polyline intersects the polyline, lines that cross intersect, and a point inside a region
intersects that region.

The table below summarizes MapBasic’s geographic operators:

Querying Objects in Tables
You can use MapBasic functions or geographic comparison operators to build queries using the object
column of your table. Building these queries is much like building queries for regular columns, except
that there are no object literals. Instead, queries using objects typically use functions or comparison
operators (for example, Entirely Within) to analyze objects.

The statement below uses the ObjectLen() function to find all the sections of cable greater than 300
meters in length:

Select *
 From cable
 Where ObjectLen(obj, ”m”) > 300

Operator Usage Evaluates TRUE if:

Contains objectA Contains objectB first object contains the centroid of the second
object

Contains Part objectA Contains Part objectB first object contains part of the second object

Contains
Entire

objectA Contains Entire
objectB

first object contains all of the second object

Within objectA Within objectB first object’s centroid is within thesecond object

Partly Within objectA Partly Within objectB part of first object is within the second object

Entirely Within objectA Entirely Within
objectB

the first object is entirely inside of the second
object

Intersects objectA Intersects objectB the two objects intersect at some point
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 206 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
The next example calculates the total area of wetlands in Indiana:

Select Sum(Area(obj,”sq mi”))
 From wetlands
 Where obj Within (Select obj From states Where state = ”IN”)

The next statement selects all the storage tanks within one kilometer of a well at longitude lon, and
latitude lat:

Set Distance Units ”km”
Select * From tanks Where obj Within
 CreateCircle(lon,lat, 1)

The statement below creates a selection with employees and the distance they live from an office (in
order of farthest to nearest):

Select
 Name, Distance(Centroidx(obj), Centroidy(obj),
 office_lon, office_lat, ”km”)
 From employee
 Order By 2 Desc

Using Geographic SQL Queries With Subselects
MapBasic allows you to query objects from one table in relation to objects in another table. For
instance, you might want to query a table of doctors to see which ones are in Marion County, Indiana.
Doctors are in one table, counties in another.

One approach is to select a county from the county table, copy the object into a variable, and query the
table of doctors against the object variable. This is how it looks:

Dim mycounty As Object
Select *
 From counties
 Where name=”Marion” and state=”IN”
Fetch First From selection
mycounty = selection.obj
Select *
 From doctors
 Where obj Within mycounty

If you use a subselect in the Where clause instead of the variable mycounty, you can produce the
same results with fewer statements:

Select *
 From doctors
 Where obj Within
 (Select obj From counties Where name=”Marion” And state=”IN”)

Notice that the subselect (the latter select, which appears in parentheses) returns a table with only one
column and one row - the object representing Marion County, Indiana. MapInfo examines each row in
the doctors table to determine whether that row is inside Marion County. The subselect performs the
same function as the variable in the previous example (mycounty), because it returns the appropriate
object to the expression.

To ensure that the subselect returns only the object column, the Select clause of the subselect lists
only one column, obj. The statement will not evaluate properly if there are many columns in the
subselect or if the column isn’t an object column.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 207 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
Use the Any() operator when the subselect returns multiple rows. The next example shows a
subselect that uses Any() to process a group of rows. It finds all the doctors in counties that have a
per-capita income of less than $15,000. Compare the locations with each county in the subselect.

Select *
 From doctors
 Where obj Within
 Any (Select obj From counties Where inc_pcap < 15000)

Switch the order in the Select statement to select counties instead of doctors. The statement below
finds all the counties that have a doctor specializing in neurology:

Select *
 From counties
 Where obj Contains
 (Select obj From doctors Where specialty = ”Neurology”)

The following example finds all the states bordering Nebraska:

Select *
 From states
 Where obj Intersects (Select obj From states Where state = ”NE”)

Using Geographic Joins
Joins link two tables together by matching, row-for-row, entries in specified columns from two tables.
The result is one table with a combination of columns for both tables with as many rows as there are
matches. MapBasic extends the relational concept of a join with geographic join criteria. For instance,
if you join demographic data with the states map, the resulting table can have all of the information
from the states map as well as the demographic data for each state.

MapInfo supports geographic conditions in the join. For instance, instead of matching two tables by a
numeric ID, you can join tables by matching objects from one table that contain an object in the second
table. This is particularly useful when there is no matching field. You can join all of the housing projects
in a table with their congressional districts without having the congressional district information in the
projects table to begin with. Determining the district may be the reason to perform the join in the first
place - to see which projects are in which congressional districts. The SQL Select statement for that
operation is:

Select *
 From projects, congdist
 Where projects.obj Within congdist.obj

After you have joined the tables geographically, you can use the Update statement to enter the
congressional district names (from the name column) into the projects table (the column cd) as follows:

Update Selection Set cd = name

The resulting projects table now contains the name of the congressional district for every project. The
following example calculates the total dollars spent on projects in each congressional district:

Select congdist.name, sum(project.amt)
 From congdist, project
 Where congdist.obj Contains project.obj
 Group By 1

Since the table order in the Where clause has changed, use the condition Contains instead of Within.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 208 MB_UG.pdf

User Guide Chapter 10: Graphical Objects
Proportional Data Aggregation
The Add Column statement can perform advanced polygon-overlay operations that perform
proportional data aggregation, based on the way one table’s objects overlap another table’s objects.
For example, suppose you have one table of town boundaries and another table that represents a
region at risk of flooding. Some towns fall partly or entirely within the flood-risk area, while other towns
are outside the risk area. The Add Column statement can extract demographic information from the
town-boundaries table, then use that information to calculate statistics within the flood-risk area. For
information about the Add Column statement, see the MapBasic Reference.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 209 MB_UG.pdf

11
Advanced Features of
Microsoft Windows
This chapter discusses how a MapBasic application can take advantage
of Windows-specific technology.

Sections in this Chapter:

Declaring and Calling Dynamic Link Libraries (DLLs) . . . 211
Creating Custom Button Icons and Draw Cursors 216
Inter-Application Communication Using DDE 218
Incorporating Windows Help Into Your Application 223

User Guide Chapter 11: Advanced Features of Microsoft Windows
Declaring and Calling Dynamic Link Libraries (DLLs)

Dynamic Link Libraries, or DLLs, are files that contain executable routines and other resources (such
as custom icons for toolbar buttons). You can use DLLs as libraries of external routines, and call those
routines from your MapBasic program. You can issue a Call statement to a DLL routine, just as you
would use a Call statement to call a MapBasic procedure. There are many DLLs available from
commercial sources. The documentation for a particular DLL should describe the routines that it
contains, its specific name, and any required parameters.

Note: If your MapBasic program calls DLLs, the DLLs must be present at run time. In other words, if
you provide your users with your compiled application (MBX file), you must also provide your
users with any DLLs called by your MBX.

The Windows DLLs are documented in the Windows Software Developer’s Kit (SDK). Third-party
books that describe the standard Windows files are also available.

Specifying the Library
Before your MapBasic program can call a DLL routine, you must declare the DLL through a Declare
statement (just as you use the Declare statement to declare the sub-procedures in your MapBasic
source code). In the Declare statement, you specify the name of the DLL file and the name of a routine
in the library.

Declare Sub my_routine Lib ”C:\lib\mylib.dll”
 (ByVal x As Integer, ByVal y As Integer)

If you specify an explicit path in your Declare statement (for example, “C:\lib\mylib.dll”), MapInfo tries
to load the DLL from that location. If the DLL file is not in that location, MapInfo does not load the DLL
(possibly causing runtime errors). If your Declare statement specifies a DLL name without a path (for
example, “mylib.dll”), MapInfo tries to locate the DLL from various likely locations, in the following
order:

1. If the DLL is in the same directory as the .MBX file, MapInfo loads the DLL; otherwise, go to
step 2.

2. If the DLL is in the directory where MapInfo is installed, MapInfo loads the DLL; otherwise, go
to step 3.

3. If the DLL is in the Windows\System directory, MapInfo loads the DLL; otherwise, go to step 4.
4. If the DLL is in the Windows directory, MapInfo loads the DLL; otherwise, go to step 5.
5. MapInfo searches for the DLL along the user’s system search path.

MapInfo follows the same search algorithm when loading bitmap icon and cursor resources from DLLs.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 211 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
Passing Parameters
Many DLLs take parameters; for example, the example above shows a Declare statement for a DLL
routine that takes two parameters.

MapBasic can pass parameters two ways: By value (in which case MapInfo copies the arguments onto
the stack), or by reference (in which case MapInfo puts the address of your MapBasic variable on the
stack; the DLL then can modify your MapBasic variables). For an introduction to the conceptual
differences between passing parameters by reference vs. by value, see Chapter 5: MapBasic
Fundamentals.

To pass a parameter by value, include the ByVal keyword in the Declare statement (as shown in the
example above). If you omit the ByVal keyword, the argument is passed by reference.

The following MapBasic data types may not be passed by value: Arrays, custom data types (i.e.,
structures), and aliases. Fixed-length string variables may be passed by value, but only if the DLL
treats the parameter as a structure. See String Arguments, below.

Calling Standard Libraries
The next example shows how a MapBasic program can reference the MessageBeep routine in the
standard Windows library known as User.

Declare Sub MessageBeep Lib ”user”
 (ByVal x As SmallInt)

Note that this Declare statement refers to the library name “user” not “user.dll”. User is the name of a
standard library that is included as part of Windows; other standard Windows library names include
GDI and Kernel.

After you declare a DLL routine using a Declare Sub statement, you can use the Call statement to call
the routine the way you would call any sub-procedure:

Call MessageBeep(1)

Calling a DLL Routine by an Alias
Some DLL routines have names that cannot be used as legal MapBasic identifiers. For example, a
DLL routine’s name might conflict with the name of a standard MapBasic keyword. In this situation, you
can use the Alias keyword to refer to the DLL routine by another name.

The following example shows how you could assign the alias Beeper to the MessageBeep routine in
the User library:

Declare Sub Beeper Lib ”user” Alias ”MessageBeep”
 (ByVal x As SmallInt)

Call Beeper(1)

Note: The name by which you will call the routine - “Beeper” in this example - appears after the Sub
keyword; the routine’s original name appears after the Alias keyword.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 212 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
String Arguments
When calling a DLL routine, a MapBasic program can pass variable-length string variables by
reference. If you are writing your own DLL routine in C, and you want MapBasic to pass a string by
reference, define the argument as char * from your C program.

CAUTION: When MapBasic passes a by-reference string argument, the DLL routine can modify
the contents of the string variable. However, DLL routines should not increase the
size of a MapBasic string, even if the string is declared as variable-length in
MapBasic.

A MapBasic program can pass fixed-length string variables by reference or by value. However, if you
pass the argument by value, the DLL routine must interpret the argument as a C structure. For
example, if your MapBasic program passes a 20-character string by value, the DLL could receive the
argument as a structure consisting of five four-byte Integer values.

When a MapBasic program passes a string argument to a DLL, MapInfo automatically includes a null
character (ANSI zero) to terminate the string. MapInfo appends the null character regardless of
whether the MapBasic string variable is fixed-length or variable-length.

If your DLL routine will modify the string argument, make sure that the string is long enough. In other
words, take steps within your MapBasic program, so that the string variable that you pass contains a
sufficiently long string.

For example, if you need a string that is 100 characters long, your MapBasic program could assign a
100-character string to the variable before you call the DLL routine. The MapBasic function String$()
makes it easy to create a string of a specified length. Or you could declare the MapBasic string variable
to be a fixed-length string (for example, Dim stringvar As String * 100 will define a string 100 bytes
long). MapBasic automatically pads fixed-length string variables with spaces, if necessary, so that the
string length is constant.

Array Arguments
MapBasic allows you to pass entire arrays to DLL routines in the same way that you can pass them to
MapBasic sub-procedures. Assuming that a DLL accepts an array as an argument, you can pass a
MapBasic array by specifying the array name with empty parentheses.

User-Defined Types
Some DLLs accept custom data types as parameters. (Use the Type statement to create custom
variable types.) MapBasic passes the address of the first element, and the rest of the elements of the
user-defined type are packed in memory following the first element.

CAUTION: For a DLL to work with custom variable types, the DLL must be compiled with
“structure packing” set to tightest packing (one-byte boundaries). For example,
using the Microsoft C compiler, you can use the /Zp1 option to specify tightest
packing.

Logical Arguments
You cannot pass a MapBasic Logical value to a DLL.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 213 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
Handles
A handle is a unique integer value defined by the operating environment and used to reference objects
such as forms and controls. Operating-environment DLLs use handles to Windows (HWND), Device
Contexts (hDC), and so on. Handles are simply ID numbers and you should never perform
mathematical functions with them.

If a DLL routine takes a handle as an argument, your MapBasic program should declare the argument
as ByVal Integer.

If a DLL function returns a handle as its return value, your MapBasic program must declare the
function’s return value type as Integer.

Example: Calling a Routine in KERNEL
The following example illustrates calling a DLL. The DLL in this example, “kernel”, is a standard
Windows library. This program uses a routine in the kernel library to read a setting from the Windows
configuration file, WIN.INI.

Declare Sub Main
’ Use a Declare Function statement to reference the Windows
’ ”kernel” library.
Declare Function GetProfileString Lib ”kernel”(
 lpszSection As String,
 lpszEntry As String,
 lpszDefault As String,
 lpszReturnBuffer As String,
 ByVal cbReturnBuffer As Smallint)
 As Smallint

Sub Main
 Dim sSection, sEntry, sDefault, sReturn As String
 Dim iReturn As Smallint

 ’ read the ”sCountry” setting
 ’ from the ”[intl]” section of WIN.INI.

 sReturn = String$(256,” ”)
 sSection = ”intl”
 sEntry = ”sCountry”
 sDefault = ”Not Found”
 iReturn = GetProfileString(sSection, sEntry,
 sDefault, sReturn, 256)

 ’ at this point, sReturn contains a country setting
 ’ (for example, ”United States”)
 Note ”[” + sSection + ”]” + chr$(10) + sEntry + ”=” + sReturn
End Sub

The Declare Function statement establishes a reference to the kernel library. Note that the library is
referred to as “kernel” although the actual name of the file is krnl386.exe. Windows uses the correct
library if your program refers to “kernel”. However, if you create your own library, your Declare
Function statements should reference the actual name of your DLL file. The kernel library receives
special handling because it is a standard part of the Windows API.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 214 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
If you use DLLs to store custom ButtonPad icons and/or custom draw cursors, you can use the same
basic technique - calling SystemInfo(SYS_INFO_MIPLATFORM) to determine which DLL to use.
However, the MapBasic syntax is somewhat different: Instead of using a Declare statement, you
reference DLL resources (bitmap icons and cursors) by including a File clause in the Create
ButtonPad statement, as shown in the following example.

Declare Sub Main
Declare Function getDLLname() As String
Declare Sub DoIt

Sub Main
 Dim s_dllname As String

 s_dllname = getDLLname()

 Create ButtonPad ”Custom” As
 ToolButton Calling doit
 Icon 134 File s_dllname
 Cursor 136 File s_dllname
End Sub
Function getDLLname() As String
 If SystemInfo(SYS_INFO_MIPLATFORM)
 = MIPLATFORM_WIN32 Then
 getDLLname = ”..\icons\Test32.DLL”
 Else
 getDLLname = ”..\icons\Test16.DLL”
 End If
End Function

Sub DoIt
 ’this procedure called if the user
 ’uses the custom button...
End Sub

A discussion of creating custom ButtonPad icons appears later in this chapter.

Troubleshooting Tips for DLLs
The following tips may help if you are having trouble creating your own DLLs.

• If you are using C++ to create your own DLLs, note that C++ compilers sometimes append
extra characters to the end of your function names. You may want to instruct your C++
compiler to compile your functions as “straight C” to prevent your function names from being
changed.

• The Microsoft 32-bit C compiler provides three calling conventions: Standard (keyword
“__stdcall”), C (keyword “__cdecl”) and fast call (keyword “__fastcall”). If you are creating DLLs
to call from MapBasic, do not use the fast call convention.

• If you are having trouble passing custom MapBasic data types (structures) to your DLL, make
sure that your C data structures are “packed” to one-byte boundaries, as discussed above.

• MapBasic can pass arguments by reference (the default) or by value. Note, however, that
passing arguments by value is not standardized among compilers; for example, different
compilers behave differently in the way that they process C-language doubles by value.
Therefore, you may find it more predictable to pass arguments by reference. When you pass
an argument by reference, you are passing an address; the major compilers on the market are
consistent in their handling of addresses.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 215 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
• It is good programming to make your DLLs “self-contained.” In other words, each DLL routine
should allocate whatever memory it uses, and it should free whatever memory it allocated.

• It is important to set up your MapBasic Declare statement correctly, so that it declares the
arguments just as the DLL expects the arguments. If a DLL routine expects arguments to be
passed by value, but your program attempts to pass the arguments by reference, the routine
may fail or return bad data.

Creating Custom Button Icons and Draw Cursors

The MapBasic language lets you control and customize MapInfo’s ButtonPads, which are an important
part of MapInfo’s user interface. For an introduction to how MapBasic can control ButtonPads, see
Chapter 7: Creating the User Interface.

A small picture (an icon) appears on each button. You may want to create your own custom icons to go
with the custom buttons that you create. The process of creating custom icons varies from platform to
platform. On Windows, custom ButtonPad icons are stored as BMP resources in DLL files.

A MapBasic program also can use custom cursors (the shapes that moves with the mouse as you click
and drag in a Map or Layout window). This section discusses the process for creating custom cursors
for Windows.

Reusing Standard Icons
Before you go about creating your own custom button icons, take a moment to familiarize yourself with
the icons that are built into MapInfo. Starting with version 4.0, MapInfo includes a wide assortment of
custom icons. These icons are provided to make it easier for MapBasic developers to create custom
buttons.

To see a demonstration of the built-in icons, run the sample program Icon Sampler (ICONDEMO.MBX).
The following picture shows one of the ButtonPads created by the Icon Sampler.

Each of the icons built into MapInfo has a numeric code. For a listing of the codes, see ICONS.DEF. To
see an individual button’s code, run ICONDEMO.MBX, and place the mouse cursor over a button; the
button’s ToolTip shows you the button’s code.

If none of MapInfo’s built-in icons are appropriate for your application, you will want to create custom
icons, as described in the following pages.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 216 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
Custom Icons
To create custom icons for MapInfo, you need a resource editor. The MapBasic development
environment does not include its own resource editor; however, MapBasic programs can use the
resources that you create using third-party resource editors. For example, you could create custom
icons using AppStudio (the resource editor that is provided with Microsoft Visual C).

On Windows, custom icons are stored in a DLL file. Before you begin creating custom icons, you
should develop or acquire a DLL file where you intend to store the icons. This DLL file can be a “stub”
file (i.e., a file that does not yet contain any useful routines).

You must create two bitmap resources for each custom icon. The first bitmap resource must be 18
pixels wide by 16 pixels high; this is the icon that will appear if the user does not check the Large
Buttons check box in MapInfo’s Toolbar Options dialog box. The second bitmap resource must be 26
pixels wide by 24 pixels tall; this is the icon that will appear if the user does check the Large Buttons
check box. You must create both resources.

The process of creating custom bitmaps involves the following steps:

• Acquire or develop the DLL file where you will store your custom icons.
• Edit the DLL using a resource editor, such as AppStudio.
• For each icon you wish to create, add two bitmap (BMP) resources: one bitmap that is 18

wide by 16 high, and another bitmap that is 26 wide by 24 high (in pixels).

Note: You must create bitmap resources, not icon resources.

• Assign sequential ID numbers to the two bitmap resources. For example, if you assign an ID of
100 to the 18 x 16 bitmap, assign an ID of 101 to the 26 x 24 bitmap.
Once you have created the pair of bitmap resources, you can incorporate your custom bitmaps into your
MapBasic application using either the Create ButtonPad or the Alter ButtonPad statement. In your
program, refer to the ID of the smaller (18 x 16) bitmap resource. For example, if you assigned the IDs
100 and 101 to your bitmap resources, your program should refer to ID 100, as shown in the following
statement:

Alter ButtonPad ”Tools”
 Add PushButton
 Icon 100 File ”MBICONS1.DLL”
 HelpMsg ”Add new record”
 Calling new_route
 Show

The DLL file where you store your custom icons (in this example, MBICONS1.DLL) must be installed
on your user’s system, along with the .MBX file. The DLL file can be installed in any of the following
locations: The directory where the .MBX file is located; the directory where the MapInfo software is
installed; the user’s Windows directory; the system directory within the Windows directory; or
anywhere along the user’s search path. If you place the DLL in any other location, your MapBasic
program must specify the directory path explicitly (for example, Icon 100 File
“C:\GIS\MBICONS1.DLL”). Note that the ProgramDirectory$() and ApplicationDirectory$()
functions can help you build directory paths relative to the MapInfo directory or relative to the directory
path where your MBX is installed.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 217 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
Custom Draw Cursors for Windows
The process of creating custom draw cursors is similar to the process of creating custom icons.
However, draw cursors have some attributes that do not apply to icons (for example, each draw cursor
has a “hot spot”).

To create custom draw cursors, use a resource editor to store CURSOR resources in a DLL. You can
store CURSOR resources and BMP resources in the same DLL file.

Inter-Application Communication Using DDE

Inter-Process Communication, or IPC, is the generic term for the exchange of information between
separate software packages. Windows supports IPC through the Dynamic Data Exchange protocol,
commonly known as DDE.

If two Windows applications both support DDE, the applications can exchange instructions and data.
For instance, a DDE-capable Windows package, such as Microsoft Excel, can instruct MapInfo to carry
out tasks (for example, Map From World).

Overview of DDE Conversations
A DDE conversation is a process that can take place between two Windows applications. Both
applications must be running, and both must support DDE conversations. A single DDE conversation
can involve no more than two applications; however, MapInfo can be involved in multiple conversations
simultaneously.

In a conversation, one application is active; it begins the conversation. This application is called the
client. The other, passive application is called the server. The client application takes all initiative; for
instance, it sends instructions and queries to the server application. The server reacts to the
instructions of the client.

How MapBasic Acts as a DDE Client
The MapBasic language supports the following statements and functions that allow a MapBasic
application to act as the client in a DDE conversation.

Refer to the MapBasic Reference or online Help for detailed information on these statements and
functions.

DDEInitiate() Opens a conversation

DDERequest$() Requests information from the server application

DDEPoke Sends information to the server application

DDEExecute Instructs the server application to perform an action

DDETerminate DDETerminateAll
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 218 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
To initiate a DDE conversation, call the DDEInitiate() function. DDEInitiate() takes two parameters:
an application name, and a topic name.

Typically, the application parameter is the name of a potential server application (for example, Excel is
the DDE application name of Microsoft Excel). The list of valid topic parameters varies depending of
the application. Often, the topic parameter can be the name of a file or document currently in use by
the server application.

For instance, if Excel is currently editing a worksheet file called TRIAL.XLS, then a MapBasic
application can initiate a conversation through the following statements:

Dim channelnum As Integer
channelnum = DDEInitiate(”Excel”, ”TRIAL.XLS”)

In this example, Excel is the application name, and TRIAL.XLS is the topic name.

Many DDE applications, including MapInfo, support the special topic name System. You can use the
topic name System to initiate a conversation, then use that conversation to obtain a list of the available
topics.

Each DDE conversation is said to take place on a unique channel. The DDEInitiate() function returns
an integer channel number. This channel number is used in subsequent DDE-related statements.

Once a conversation has been initiated, the MapBasic application can send commands to the server
application by issuing the DDEExecute statement. For instance, a MapBasic application could instruct
the server application to open or close a file.

A MapBasic application can request information from the server application by calling the
DDERequest$() function. When calling DDERequest$(), you must specify an item name. A DDE item
name tells the server application exactly what piece of information to return. If the server application is
a spreadsheet, the item name might be a cell name.

Use the DDEPoke statement to send information to the server. Generally, when a MapBasic
application pokes a value to the server application, the value is stored in the appropriate document, as
if it had been entered by the user. The following example shows how a MapBasic program can store
the text “NorthEast Territory” in a cell in the DDE server’s worksheet.

DDEPoke channelnum, ”R1C2”, ”NorthEast Territory”

Once a DDE conversation has completed its task, the MapBasic (client) application should terminate
the conversation by issuing a DDETerminate or DDETerminateAll statement. DDETerminate closes
one specific DDE conversation; DDETerminateAll closes all open DDE conversations that were
opened by that same application. Multiple MapBasic applications can be in use at one time, with each
application conducting its own set of DDE conversations.

When a MapBasic application acts as a DDE client, the application may generate runtime errors if the
server application “times-out” (does not respond to the client’s actions within a certain amount of time).
On Windows 3.1, this time-out behavior is controlled by a setting in the file MAPINFO.INI. MapInfo
creates a [MapInfo Common] section of MAPINFO.INI. The [MapInfo Common] section can contain a
DDeTimeout setting, such as the following:

DDeTimeout=10000
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 219 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
The number represents a length of time, in milliseconds; the default value is ten thousand (ten
seconds). If your application encounters time-out errors while acting as a DDE client, you may want to
edit MAPINFO.INI to specify a larger setting than the default.

If you are running a 32-bit version of MapInfo, the time-out setting is stored in the Windows registry
instead of in a .INI file. For more details about how MapInfo stores settings in the registry, search for
“registry” in the MapBasic online Help index.

How MapInfo Acts as a DDE Server
MapInfo acts as the server when another Windows application initiates the DDE conversation. This
allows the client application to read from MapBasic global variables and even poke values into
MapBasic global variables. The DDE client can also perform execute operations to run MapBasic
statements; for example, the client could use DDE execute functionality to issue a MapBasic Map
statement. (However, the client cannot issue MapBasic flow-control statements.)

Other software packages do not necessarily provide the same set of DDE statements that MapBasic
provides. While MapBasic provides a DDEPoke statement, other packages may provide the same
functionality under a different name. To learn what DDE statements are provided by a particular
Windows application, refer to the documentation for that application.

Any application that acts as a DDE client must address the three basic DDE parameters application,
topic, and item that were described above.

Application name: Specify MapInfo as the application name to initiate a DDE conversation with
MapInfo as the server.

Topic name: Specify System or specify the name of a MapBasic application that is currently running
(for example, SCALEBAR.MBX).

Item name: The item name that you specify depends on the topic you use. If you use MapInfo as the
application name and System as the topic name, you can use any item name from the table below.

Application:“MapInfo”

Topic:“System”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 220 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
Actions and Items Supported by the DDE Conversation:

For example, the following MapBasic program⎯which you can type directly into the MapBasic
window⎯conducts a simple DDE conversation using “MapInfo” as the application and “System” as the
topic.

 Dim i_channel As Integer
 i_channel = DDEInitiate(”MapInfo”, ”System”)
 Print DDERequest$(i_channel, ”Version”)
 DDETerminate i_channel

The DDEInitiate() function call initiates the DDE conversation. Then the DDERequest$() function
performs a peek request, using “Version” as the item name.

DDE action DDE item name Effect

Peek request “SysItems” MapInfo returns a TAB-separated list of
item names accepted under the System
topic:
Topics SysItems Formats Version

Peek request “Topics” MapInfo returns a TAB-separated list of
currently available topics (System, and the
names of all running MapBasic applica-
tions).

Peek request “Formats” MapInfo returns a list of all Clipboard for-
mats supported by MapInfo (TEXT).

Peek request “Version” MapInfo returns a text string representing
the MapInfo version number, multiplied by
100. For example, MapInfo 4.0.0 returns
“400”. See example below.

Peek request A MapBasic expres-
sion

MapInfo interprets the string as a MapBa-
sic expression and returns the value as a
string. If expression is invalid, MapInfo
returns an error.
This functionality applies to MapInfo 4.0
and higher.

Execute A text message MapInfo tries to execute the message as a
MapBasic statement, as if the user had
typed the statement into the MapBasic
window.
The statement cannot contain calls to
user-defined functions, although it can
contain calls to standard functions.
The statement cannot reference variables
that are defined in compiled applications
(.MBX files). However, the statement can
reference variables that were defined by
executing Dim statements into the Map-
Basic window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 221 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
If you use the name of a running MapBasic application (for example, “C:\MB\SCALEBAR.MBX”, or
“SCALEBAR.MBX”, or “SCALEBAR”) as the DDE topic name, you can use any item name from the
table below.

Application:“MapInfo”

Topic:The name of a running MapBasic application

Actions and Items Supported by the DDE Conversation:

For example, the following MapBasic program ⎯ which you can type directly into the MapBasic
window ⎯ conducts a simple DDE conversation using “SCALEBAR.MBX” as the topic. This
conversation prints a list of the global variables used by SCALEBAR.MBX.

Note: This conversation will only work if the application SCALEBAR.MBX is already running.
 Dim i_channel As Integer
 i_channel = DDEInitiate(”MapInfo”, ”SCALEBAR.MBX”)
 Print DDERequest$(i_channel, ”{items}”)
 DDETerminate i_channel

How MapInfo Handles DDE Execute Messages
There are two ways that the client application can send MapInfo an execute message:

• When a conversation uses “System” as the topic, and the client application sends an execute
message, MapInfo tries to execute the specified message as a MapBasic statement.

• When a conversation uses the name of a MapBasic application as the topic, and the client
sends an execute message, MapInfo calls the application’s RemoteMsgHandler procedure,
which can then call CommandInfo() to determine the text of the execute message.

DDE action DDE item name Effect

Peek request -{items}" MapInfo returns a TAB-separated list of the
global variables defined by the running appli-
cation. See example below.

Peek request The name of a global
variable

MapInfo returns a string representing the value
of the variable.

Peek request A string that is not the
name of a global vari-
able

If the MapBasic application has a function
called RemoteQueryHandler(), MapInfo calls
the function. The function can determine the
item name by calling:
 CommandInfo(CMD_INFO_MSG)
This functionality is new in MapInfo 4.0.

Poke The name of a global
variable

MapInfo stores the new value in the variable.

Execute A text message If the MapBasic application has a procedure
called RemoteMsgHandler, MapInfo calls the
procedure. The procedure can determine the
text message by calling:
 CommandInfo(CMD_INFO_MSG)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 222 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
A MapBasic application can act as the client in one DDE conversation, while acting as the server in
another conversation. A MapBasic application can initiate a conversation with another MapBasic
application, or with MapInfo itself.

Communicating With Visual Basic Using DDE
Many MapBasic programmers use Microsoft’s Visual Basic language to enhance their MapBasic
applications. You might use Visual Basic to create elaborate dialog boxes that would be difficult to
create using the MapBasic Dialog statement. For example, a Visual Basic program can create custom
controls that are not available through MapBasic’s Dialog statement.

MapBasic applications can communicate with Visual Basic applications using DDE (or using OLE
Automation). For more information about communicating with Visual Basic applications, see
Chapter 12: Integrated Mapping.

Examples of DDE Conversations
For an example of using DDE to read and write values of cells in a Microsoft Excel worksheet, see
DDEInitiate() in the MapBasic Reference or online Help.

The sample program, AppInfo (APPINFO.MBX), provides a more complex DDE example. The AppInfo
program is a debugging tool. If you run your MapBasic application, and then you run AppInfo, you can
use AppInfo to monitor the global variables in your MapBasic program. The WhatApps() procedure
queries the DDE item name “Topics” to retrieve the list of running MBX files. The WhatGlobals()
procedure conducts another DDE conversation, using the “{Items}” item name to retrieve the list of
global variable names.

DDE Advise Links
When MapInfo acts as a server in a DDE conversation, the conversation can support both warm and
hot advise links. In other words, when a Windows application initiates a DDE conversation that
monitors the values of MapBasic global variables, Windows is able to notify the DDE client when and if
the values of the MapBasic global variables change.

When a MapBasic application acts as a client in a DDE conversation, there is no mechanism for
creating an advise link.

Incorporating Windows Help Into Your Application

If you are developing a complex application, you may want to develop an online help file that explains
the application. To create a help file, you need a help compiler. The MapBasic development
environment does not include a help compiler. However, if you already own a Windows help compiler,
and you use it to create a Windows help file, you can control the help file through a MapBasic
application. Note: MapInfo’s Technical Support staff cannot assist you with the creation of on-line help
files.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 223 MB_UG.pdf

User Guide Chapter 11: Advanced Features of Microsoft Windows
Within your program, you can control the Help window by using the Open Window, Close Window
and Set Window statements. The following statement opens the Help window, showing the Contents
screen of the MapInfo help file:

Set Window Help Contents

The Set Window statement has many uses; see the MapBasic Reference for details. Most forms of the
Set Window statement require an Integer window identifier, but if you specify the Help keyword, you
should omit the Integer identifier - there is only one Help window.

If you create a custom help file, and call the file Dispatch.hlp, the following statement displays your help
file in the Help window:

Set Window Help File ”C:\MAPINFO\DISPATCH.HLP”

The following statement sets the Help window so that it displays the help screen that has 500 as its
context ID number:

Set Window Help ID 500

Context ID numbers (such as 500 in the preceding example) are defined in the [MAP] section of a help
file’s Project file (for example, filename.hpj). For more information about the architecture of a Windows
help file, see the documentation for the Windows Software Developers Kit (SDK).

If you want to provide a help screen for a specific dialog in your application, place a Button control in
the dialog, and assign the Button a title called “Help.”

Control Button
 Title ”Help”
 Calling show_help_sub

Assign the Help Button control a handler procedure, and have the handler procedure issue a Set
Window statement. The user will be able to obtain help for the dialog by clicking the Help button. For
more information about assigning handler procedures to dialog controls, see Chapter 7: Creating the
User Interface.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 224 MB_UG.pdf

12
Integrated Mapping
You can control MapInfo Professional for using programming languages
other than MapBasic. For example, if you know how to program in Visual
Basic, you can integrate a MapInfo Map window into your Visual Basic
application, while doing most ⎯ maybe even all ⎯ of your programming
in Visual Basic. This type of application development is known as
Integrated Mapping, because you are integrating elements of MapInfo
into another application.

If you already know how to program in other programming languages,
such as C or in Visual Basic, you will find that Integrated Mapping
provides the easiest way to integrate MapInfo windows into non-
MapBasic applications.

Sections in this Chapter:

What Does Integrated Mapping Look Like?. 226
Conceptual Overview of Integrated Mapping 227
Technical Overview of Integrated Mapping 228
A Short Sample Program: “Hello, (Map of) World” 229
A Closer Look at Integrated Mapping. 229
Using Callbacks to Retrieve Info from MapInfo. 237
Alternatives to Using OLE Callbacks 241
Related MapBasic Statements and Functions 243
MapInfo Command-Line Arguments. 253
Adding Toolbar Buttons and Handlers 258
Learning More. 261

User Guide Chapter 12: Integrated Mapping
What Does Integrated Mapping Look Like?

You control the appearance of the Integrated Mapping application. If you want, you can create a user
interface that is radically different from the MapInfo user interface. For example, the following picture
shows the FindZip application (a sample Visual Basic application that integrates a MapInfo Map
window into a Visual Basic form).

The following picture shows a multiple-document interface (MDI) application, also written in Visual
Basic, that includes MapInfo Map and Browser windows.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 226 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
When you integrate a map into your program, the user sees a genuine MapInfo Map window ⎯ not a
bitmap, metafile, or any other type of snapshot. You can allow the user to interact with the map (for
example, using the Zoom tools to magnify the map). An integrated Map window has all of the
capabilities of a Map window within MapInfo.

Note: When the user runs an Integrated Mapping application, the MapInfo “splash screen” (the
image that ordinarily displays while MapInfo is loading) does not appear.

Conceptual Overview of Integrated Mapping

To create an Integrated Mapping application, you write a program ⎯ but not a MapBasic program.
Integrated Mapping applications can be written in several languages. The most often-used languages
are C and Visual Basic. The code examples in this chapter use Visual Basic.

Within your program, you issue a statement to launch MapInfo in the background. For example, if you
are using Visual Basic, you could launch MapInfo by calling Visual Basic’s CreateObject() function.
MapInfo launches silently in the background, without displaying a splash screen.

Your program manipulates MapInfo by constructing strings that represent MapBasic statements, using
OLE Automation (or DDE, if you prefer) to send the strings to MapInfo. MapInfo executes the
statements as if you had typed the statements into the MapBasic window.

If you want to open a Map window, use MapBasic’s Map From statement, just as you would in a
conventional MapBasic program. But in an Integrated Mapping application, you also issue additional
statements (for example, Set Next Document Parent) to make the Map window become a child
window of your application. This process is known as “reparenting” the window. You can reparent Map,
Browse, Graph, Layout, and Legend windows.

Note: Reparenting MapInfo’s windows into another application does not give MapInfo access to the
other application’s data. Before you can display data in a MapInfo window, you must store the
data in a MapInfo table.

This illustration shows the major elements of an Integrated Mapping application:

MapInfo
Professional
for Windows

Optional:

Compiled
MapBasic
program

OLE or DDE
Client Program
(not in MapBasic)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 227 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Note that the compiled MapBasic program (.MBX) element is optional. For some applications, you
might not need to create a compiled MapBasic program. However, if you have already written
MapBasic programs, you can continue to use your existing MapBasic code as part of an Integrated
Mapping solution.

Technical Overview of Integrated Mapping

System Requirements
• Integrated Mapping requires MapInfo 4.0 or later. You may use a full copy of MapInfo or a

MapInfo runtime (a special “stripped-down” version of MapInfo, sold only as the base for
custom applications).

• Your user’s computer must have enough free memory and system resources to run both your
client program and MapInfo simultaneously.

• Your client program (for example, your Visual Basic program) must be able to act as an OLE
Automation controller or as a DDE client. OLE Automation is strongly recommended, because
it is faster and more reliable than DDE. Automation also provides better error reporting than
DDE. MapInfo uses OLE properties to report runtime error codes; if you use DDE instead of
OLE, you cannot retrieve runtime error codes.
Your client program must be able to create a user-interface element (for example, a window,
form, or control) as a place-holder for where the map will go. Your client program must also be
able to determine the Windows HWND value of the user-interface element.

For example, in Visual Basic you can place a PictureBox control on a form. When you send a
command to MapInfo, telling MapInfo to create a map inside the PictureBox, you must specify
the PictureBox’s HWND.

Other Technical Notes
• To develop an Integrated Mapping application, you must write a program in a language other

than MapBasic. (We refer to this program as the client program.) You can write the client
program using various popular development products, such as C/C++, Visual Basic (3.0 or
later), PowerBuilder, or Delphi.

• Integrated Mapping uses OLE Automation, but does not use OLE Embedding. When you want
to place a MapInfo Map window into your application, you do not embed it; instead, you
“reparent” the window by sending MapInfo a series of command strings. The end result is that
MapInfo windows appear to the user as child windows of your application.

• Integrated Mapping does not involve VBX controls or OCX controls. The MapInfo software
does include some DLLs, but you do not call those DLLs directly; those DLLs are used
internally by MapInfo.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 228 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
A Short Sample Program: “Hello, (Map of) World”

The following Visual Basic example will give you a sense of how easy it is to integrate MapInfo
windows into another application.

Create a new Visual Basic project. In the project’s General Declarations procedure, declare an Object
variable. (In this example, we will name the variable mi, but you can use any variable name you like.)

Dim mi As Object

Next, add statements to the Form_Load procedure, so that the procedure looks like this:

Sub Form_Load()

 Set mi = CreateObject(”MapInfo.application”)
 mi.do ”Set Application Window ” & Form1.hWnd
 mi.do ”Set Next Document Parent ” & Form1.hWnd & ” Style 1”
 mi.do ”Open Table ””World”” Interactive Map From World”
 mi.RunMenuCommand 1702
 mi.do ”Create Menu ””MapperShortcut”” ID 17 As ””(-”” ”

End Sub

When you run this Visual Basic program, it launches MapInfo in the background, and creates a Map
window. The Map window behaves as a child window of the Visual Basic program. The following
sections provide detailed explanations of each step in the Integrated Mapping process.

A Closer Look at Integrated Mapping

The following section explains how to integrate elements of MapInfo into a Visual Basic application.
This discussion is written with two assumptions:

• You should already understand the basic terms and concepts of Windows programming. For
example, you should know what a “child window” is. For background information on the
concepts of Windows programming, see the documentation for your programming language.

• You should already know how to program in Visual Basic, because the code examples in this
discussion use Visual Basic syntax. However, even if you are not a Visual Basic developer, you
should read this section. The basic concepts and procedures discussed in this section also
apply to other programming languages.

Starting MapInfo Professional
To start a unique instance of MapInfo Professional, call Visual Basic’s CreateObject() function, and
assign the return value to a Visual Basic Object variable. (Tip: You may want to make the Object
variable global, otherwise, the MapInfo object is released when you exit the local procedure.) For
example, if you named your Object variable “mapinfo” then the following statement launches MapInfo:

 Set mapinfo = CreateObject(”MapInfo.Application”)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 229 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
To attach to a previously-running instance of MapInfo which was not launched by a
CreateObject() call, use Visual Basic’s GetObject() function.

 Set mapinfo = GetObject(, ”MapInfo.Application”)

Note: If you are working with a MapInfo runtime instead of a full copy of MapInfo, specify
“MapInfo.Runtime” instead of “MapInfo.Application”. Note that a MapInfo runtime and a full
copy of MapInfo can run simultaneously.

The CreateObject() and GetObject() functions use OLE Automation to connect to MapInfo. If you
need to use DDE rather than OLE, use Visual Basic’s Shell() function to start MapInfo, and then use
the LinkMode property to establish the DDE connection.

Under 32-bit Windows (Windows 95 or Windows NT), multiple instances of MapInfo can be running
simultaneously. If you launch MapInfo, and then launch an Integrated Mapping application that calls
CreateObject(), two separate instances of MapInfo will be running. However, under 16-bit versions of
Windows, only one instance of MapInfo can run at a time. Under Windows 3.1, if you are already
running MapInfo, and then you launch an Integrated Mapping application that calls CreateObject(),
the Integrated Mapping application will not be able to launch another instance of MapInfo.

Sending Commands to MapInfo
After launching MapInfo, construct text strings that represent MapBasic statements. For example, if
you want MapInfo to execute a MapBasic Open Table statement, you might construct the following
string (within Visual Basic):

 msg = ”Open Table ””STATES.TAB”” Interactive ”

If you connected to MapInfo using OLE Automation, send the command string to MapInfo by using the
Do method. For example:

 mapinfo.Do msg

When you use the Do method, MapInfo executes the command string as if you had typed the
command into the MapBasic window.

If you connected to MapInfo using DDE, send the command string to MapInfo by using the DDE
LinkExecute method.

Querying Data from MapInfo
To query the value of a MapBasic expression, construct a string that represents the expression. For
example, if you want to determine the value returned by the MapBasic function call WindowID(0),
construct the following string (within Visual Basic):

msg = ”WindowID(0)”

If you connected to MapInfo using OLE Automation, send the expression string to MapInfo by using the
Eval OLE method. For example:

Dim result As String
result = mapinfo.Eval ”WindowID(0)”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 230 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
When you use the Eval method, MapInfo interprets the string as a MapBasic expression, determines
the value of the expression, and returns the value, as a string. Note: If the expression has a Logical
value, MapInfo returns a one-character string, “T” or “F”.

If you connected to MapInfo using DDE, query the value by using the DDE LinkRequest method.

Reparenting MapInfo Windows
After you launch MapInfo, use the MapBasic statement Set Application Window so that MapInfo
dialog boxes and error messages are owned by your client program. (In the following statement,
“FormName” is the name of a form in Visual Basic.)

msg = ”Set Application Window ” & FormName.hWnd
mapinfo.Do msg

Then, whenever you want to integrate a MapInfo window into the Visual Basic application, send
MapInfo a Set Next Document statement, followed by the MapBasic statement that creates the
window. For example, the following commands create a MapInfo Map window as a child window of the
Visual Basic program. (“MapFrame” is the name of a PictureBox control in Visual Basic.)

msg = ”Set Next Document Parent ” & MapFrame.hWnd & ” Style 1”
mapinfo.Do msg

msg = ”Map From States”
mapinfo.Do msg

The Set Next Document statement lets you “reparent” document windows. Within the Set Next
Document statement, you specify the HWND (handle) of a control in your Visual Basic program. The
next time you create a MapInfo window (using the Map, Graph, Browse, Layout, or Create Legend
statements), the newly-created window is reparented, so that it has your client program as its parent.

The Set Next Document statement includes a Style clause which controls the type of window you will
create. The example above specifies Style 1 which produces a child window with no border. You could
specify Style 2 to produce a popup window with a half-height title bar (like MapInfo’s Legend window),
or Style 3 to produce a popup window with a full-height title bar.

For each window that you reparent, issue a pair of statements ⎯ a Set Next Document Parent
statement, followed by the statement that creates the window. After you create the window, you may
want to query the value “WindowID(0)” to obtain MapInfo’s Integer Window ID for the new window.
(Many MapBasic statements require that you know the window’s ID.)

mapid = Val(mapinfo.eval(”WindowID(0)”))

Note that even after you have reparented a Map window, MapInfo maintains that window. If part of the
window needs to be repainted, MapInfo automatically repaints it. Therefore, your client program can
simply ignore any erase or repaint messages pertaining to the reparented window.

If you are working in C, you might not be able to ignore erase messages. In this case you should set
your parent window’s style to include the WS_CLIPCHILDREN window style.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 231 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Reparenting Legends, Raster Dialogs and Other Special Windows
MapInfo has several modeless windows, including the Info window, Ruler window, Message window,
the Raster related dialogs, and Statistics window. To reparent one of these special “floating” windows,
use MapBasic’s Set Window ... Parent statement. For example, the FindZip sample program uses the
following statement to reparent the Info window:

mapinfo.do ”Set Window Info Parent ” & FindZipForm.hWnd

Note that the process for reparenting the Info window is different than the process for reparenting Map
windows. When reparenting the Info window, you do not use the Set Next Document statement. The
process is different because there is only one Info window, whereas you can have numerous Map
windows.

Legend windows are a special case. Ordinarily, the MapInfo user interface has only one Legend
window, just as it has only one Info window. However, the MapBasic language includes a Create
Legend statement, so that you can create additional Legend windows.

To reparent MapInfo’s standard “one and only” Legend window, use MapBasic’s Set Window Legend
Parent statement.

To create a custom Legend window and reparent it, use MapBasic’s Set Next Document statement,
and then use MapBasic’s Create Legend statement. Note that in this case, you are creating a Legend
that is tied to one specific Map or Graph window. Unlike MapInfo’s default Legend window, such
custom Legend windows do not change when the active window changes.

You can make a legend float inside a Map window. In the Set Next Document statement, specify the
Map window’s HWND as the parent. The legend becomes a frame “trapped” within the Map window.
For an example of this technique, see the sample program FindZip.

Allowing the User to Resize a Map Window
Whether the user is able to resize the Map window depends on how you set up your application. The
sample program, FindZip, places a Map window in a Visual Basic PictureBox control, so that it cannot
be resized. However, you could reparent a Map window using an MDI interface, which allows the user
to resize the window.

Note: When the user resizes the Map window, MapInfo does not automatically reset the map’s
contents to fill the new window size. Therefore, if your application allows the user to resize the
Map window, you must call the Windows API function MoveWindow to make the Map window
conform to the new size.

For example, if your Visual Basic program will run under 32-bit Windows, you can use the following
Visual Basic Declare statement to access the MoveWindow API function:

Declare Function MoveWindow Lib ”user32” _
 (ByVal hWnd As Long, _
 ByVal x As Long, ByVal y As Long, _
 ByVal nWidth As Long, ByVal nHeight As Long, _
 ByVal bRepaint As Long) As Long
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 232 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
When the user resizes the Map window, call MoveWindow. In Visual Basic, a resize event triggers the
Form_Resize() procedure; you could call MoveWindow from within that procedure, as shown in the
following example.

Dim mHwnd As Long
mHwnd = Val(mapinfo.Eval(”WindowInfo(FrontWindow(),12)”))
MoveWindow mHwnd, 0, 0, ScaleWidth, ScaleHeight, 0

The number 12 corresponds to the MapBasic identifier WIN_INFO_WND.

ScaleWidth and ScaleHeight are properties of a Visual Basic form, representing the form’s current
width and height.

Note: The ScaleMode property must be set to Pixels, so that ScaleWidth and ScaleHeight represent
pixel measurements.

Integrating MapInfo Toolbar Buttons
You cannot re-parent MapInfo’s ButtonPads (toolbars). If you want your client program to have toolbar
buttons, you must create the buttons in the language you are using. For example, if you are using
Visual Basic, you must create your toolbar buttons using Visual Basic.

If you want a Visual Basic toolbar button to emulate a standard MapInfo button, use MapInfo’s
RunMenuCommand method. (This method has the same effect as the MapBasic Run Menu
Command statement.) For example, the FindZip sample program has an InfoTool_Click procedure,
which issues the following statement:

mapinfo.RunMenuCommand 1707

When the user clicks the Visual Basic control, the FindZip program calls MapInfo’s
RunMenuCommand method, which activates tool number 1707 (MapInfo’s Info tool). As a result of the
method call, MapInfo’s Info tool becomes the active tool.

The “magic number” 1707 refers to MapInfo’s Info tool. Instead of using magic numbers, you can use
identifiers that are more self-explanatory. MapBasic defines a standard identifier,
M_TOOLS_PNT_QUERY, which has a value of 1707. Thus, the following RunMenuCommand
example has the same effect as the preceding example:

mapinfo.RunMenuCommand M_TOOLS_PNT_QUERY

Using identifiers (such as M_TOOLS_PNT_QUERY) can make your program easier to read. However,
if you plan to use identifiers in your code, you must set up your program so that it includes an
appropriate MapBasic header file. If you are using Visual Basic, use the header file MAPBASIC.BAS. If
you are using C, use the header file MAPBASIC.H.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 233 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
The following table lists the ID numbers for each of MapInfo’s standard tool buttons. The codes in the
third column appear in MAPBASIC.BAS (for Visual Basic), MAPBASIC.H (for C), and MENUS.DEF (for
MapBasic).

You also can create custom drawing-tool buttons, which call your program after being used. For a
general introduction to the capabilities of custom toolbuttons, see Chapter 7: Creating the User
Interface. For details on using custom toolbuttons within an Integrated Mapping application, see the
“callbacks” discussion, later in this chapter.

Main Toolbar Buttons Number Identifier Code

Select 1701 M_TOOLS_SELECTOR

Marquee Select 1722 M_TOOLS_SEARCH_RECT

Radius Select 1703 M_TOOLS_SEARCH_RADIUS

Boundary Select 1704 M_TOOLS_SEARCH_BOUNDARY

Zoom In 1705 M_TOOLS_EXPAND

Zoom Out 1706 M_TOOLS_SHRINK

Grabber 1702 M_TOOLS_RECENTER

Info 1707 M_TOOLS_PNT_QUERY

Label 1708 M_TOOLS_LABELER

Ruler 1710 M_TOOLS_RULER

Drag Window 1734 M_TOOLS_DRAGWINDOW

Symbol 1711 M_TOOLS_POINT

Line 1712 M_TOOLS_LINE

Polyline 1713 M_TOOLS_POLYLINE

Arc 1716 M_TOOLS_ARC

Polygon 1714 M_TOOLS_POLYGON

Ellipse 1715 M_TOOLS_ELLIPSE

Rectangle 1717 M_TOOLS_RECTANGLE

RoundedRect 1718 M_TOOLS_ROUNDEDRECT

Text 1709 M_TOOLS_TEXT

Frame 1719 M_TOOLS_FRAME
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 234 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Customizing MapInfo’s Shortcut Menus
MapInfo displays a shortcut menu if the user right-clicks on a MapInfo window. These shortcut menus
appear even in Integrated Mapping applications. Depending on the nature of your application, you may
want to modify or even eliminate MapInfo’s shortcut menus. For example, you probably will want to
remove the Clone View menu command from the Map window shortcut menu, because cloning a Map
window may not work in an Integrated Mapping application.

To remove one or more items from a MapInfo shortcut menu, use MapBasic’s Alter Menu ... Remove
statement, or redefine the menu entirely by using a Create Menu statement. For details, see the
MapBasic Reference or online Help.

To add custom items to a MapInfo shortcut menu, use MapBasic’s Alter Menu ... Add statement, and
specify the Calling OLE or Calling DDE syntax; see the “callbacks” discussion later in this chapter.

To eliminate a shortcut menu entirely, use the MapBasic statement Create Menu to redefine the menu,
and use the control code “(-” as the new menu definition. For example, the following statement
destroys MapInfo’s shortcut menu for Map windows:

mapinfo.do ”Create Menu ””MapperShortcut”” ID 17 As ””(-”” ”

Printing an Integrated MapInfo Window
You can use MapBasic’s PrintWin statement to print a MapInfo window, even a reparented window.
For example, see the FindZip sample program. The FindZip program’s File menu contains a Print Map
command. If the user chooses Print Map, the program executes the following procedure:

Private Sub Menu_PrintMap_Click()
 mapinfo.do ”PrintWin”
End Sub

MapBasic’s PrintWin statement prints the map on a single page, with nothing else on the page.

You also can use MapBasic’s Save Window statement to output a Windows metafile (WMF file)
representation of the Map window. For example, see the FindZip sample program: If the user chooses
Print Form, the program creates a metafile of the map, attaches the metafile to the form, and then uses
Visual Basic’s PrintForm method. The end result is a printout of the form which includes the metafile of
the map.

Detecting runtime Errors
When your client program sends MapInfo a command string, the command might fail. For example, the
command “Map From World” fails if the World table is not open. MapInfo generates an error code if the
command fails.

To trap a MapInfo error, set up error trapping just as you would for any other OLE Automation process.
In Visual Basic, for example, use the On Error statement to enable error-trapping.

To determine which error occurred in MapInfo, read MapInfo’s OLE Automation properties
LastErrorCode and LastErrorMessage. For details on these properties, see OLE Automation Object
Model, later in this chapter. For a listing of MapBasic’s error codes, see the text file ERRORS.DOC.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 235 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Note: The LastErrorCode property returns values that are 1000 greater than the error numbers listed
in ERRORS.DOC. In other words, if an error condition would cause a compiled MapBasic
application to produce a runtime error 311, the same error condition would cause an Integrated
Mapping application to set the LastErrorCode property to 1311.

When you run a MapBasic application (MBX file) via Automation, the MBX will not trap its own runtime
errors. You can run an MBX by using the Do method to issue a MapBasic Run Application statement.
However, if a MapBasic runtime error occurs within the MBX, the MBX will halt, even if the MBX uses
the MapBasic OnError statement. If you are building an MBX which you will call via Automation, try to
keep the MBX simple. Within the MBX, avoid using MapBasic’s OnError statement; instead, do as
much error checking and prevention as possible in the controlling application before running the MBX.

Terminating MapInfo
If you create a new instance of MapInfo by calling Visual Basic’s CreateObject() function, that
instance of MapInfo terminates automatically when you release its Object variable. If the Object
variable is local, it is released automatically when you exit the local procedure. To release a global
Object variable, assign it a value of Nothing:

Set mapinfo = Nothing

If you use DDE to communicate with MapInfo, you can shut MapInfo down by using the LinkExecute
method to send an “End MapInfo” command string.

Terminating Your Visual Basic Program
If you are creating a 16-bit Visual Basic program that uses DDE to communicate with MapInfo, make
sure you terminate your DDE links before you exit your Visual Basic program. If you exit your Visual
Basic program while DDE links are still active, you may experience undesirable behavior, including
runtime error messages. This problem occurs when you run 16-bit Visual Basic programs under a 32-
bit version of Windows (Windows 95 or Windows NT). To avoid this problem, set up your Visual Basic
program so that it terminates its DDE links before it exits.

A Note About MapBasic Command Strings
As shown in the preceding pages, you can create strings that represent MapBasic statements, and
then send the strings to MapInfo by using the Do OLE Method. Note that you can combine two or more
statements into a single command string, as the following Visual Basic example illustrates. (In Visual
Basic, the & character performs string concatenation.)

Dim msg As String

msg=”Open Table ””States”” Interactive ”
msg=msg & ”Set Next Document Parent ” & Frm.hWnd & ” Style 1 ”
msg=msg & ”Map From States ”

mapinfo.do msg

When parsing the command string at run time, MapInfo automatically detects that the string contains
three distinct MapBasic statements: An Open Table statement, a Set Next Document statement, and
a Map From statement. MapInfo is able to detect the distinct statements because Open, Set, and Map
are reserved keywords in the MapBasic language.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 236 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Note the space after the keyword Interactive. That space is necessary; without the space, the
command string would include the substring “InteractiveSet” which is not valid MapBasic syntax.
Because each command string ends with a space, MapInfo can detect that Interactive and Set are
separate keywords.

If you combine multiple MapBasic statements into a single command string, make sure you include a
space after each statement, so that MapInfo can detect that the string contains separate statements.

A Note About Dialog Boxes
In an Integrated Mapping application, the control OKButton will be ineffective in dismissing the dialog.
Use a regular push-button control and set a variable to determine if the user has clicked that button.

A Note About Accelerator Keys
In an Integrated Mapping application, MapInfo’s accelerator keys (for example, Ctrl-C to copy) are
ignored. If you want your application to provide accelerator keys, you must define those accelerators
within your client program (for example, your Visual Basic application).

However, Integrated Mapping applications do support pressing the S key to toggle Snap To Node on or
off.

Using Callbacks to Retrieve Info from MapInfo

You can set up your Integrated Mapping application so that MapInfo automatically sends information to
your client program. For example, you can set up your program so that whenever a Map window
changes, MapInfo calls your client program to communicate the Integer window ID of the window that
changed. This type of notification, where an event causes MapInfo to call your client program, is known
as a callback.

• Callbacks allow MapInfo to send information to your client program under the following
circumstances:

• The user interacts with a MapInfo window while using a custom tool. For example, if the
user clicks and drags on a Map window to draw a line, MapInfo can call your client program to
communicate the x- and y-coordinates chosen by the user.

• The user chooses a menu command. For example, suppose your application customizes
MapInfo’s shortcut menus (the menus that appear if the user right-clicks). When the user
chooses a custom command from a shortcut menu, MapInfo can call your client program to
notify your program of the menu event.

• A Map window changes. If the user changes the contents of a Map window (for example, by
adding or removing map layers, or by panning the map), MapInfo can send your client program
the Integer window ID of the window that changed. (This is analogous to MapBasic’s special
handler procedure, WinChangedHandler.)

• The status bar text changes in MapInfo. MapInfo’s status bar does not appear automatically
in Integrated Mapping applications. If you want your client program to emulate MapInfo’s
status bar, you must set up your application so that MapInfo notifies your client program
whenever the status bar text changes.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 237 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Technical Requirements for Callbacks
If you plan to use callbacks, your client program must be able to act as a DDE server or as an OLE
Automation server. Visual Basic 4.0 Professional Edition and C++ can create applications that are
Automation servers. However, applications written using Visual Basic 3.0 cannot act as Automation
servers, so they must use DDE to handle callbacks.

General Procedure for Using OLE Callbacks
The following steps provide an overview of the process of using callbacks through OLE:

1. Using Visual Basic 4.0, C++, or any other language that can act as an OLE server, create a
class definition that defines one or more OLE methods. For details on how to create a class
definition, see the documentation for your programming language.

2. If you want to emulate MapInfo’s status bar, create a method called SetStatusText. Define this
method so that it takes one argument: a string.

3. If you want MapInfo to notify your program each time a Map window changes, crIeate a
method called WindowContentsChanged. Define this method so that it takes one argument: a
four-byte integer.

4. If you want MapInfo to notify your client program whenever custom menu commands or
custom buttons are used, create one or more additional method(s), using whatever method
names you choose. Each of these methods should take one argument: a string.

5. Create an object using your custom class. For example, if you called the class “CMyClass”, the
following Visual Basic statement creates an object of that class:

 Public myObject As New CMyClass

6. After your program launches MapInfo, call MapInfo’s SetCallback method, and specify the
name of the object:

 mapinfo.SetCallback myObject

If you want MapInfo to notify your client program when the user uses a custom toolbar button,
define a custom button (for example, send MapInfo an Alter ButtonPad ... Add statement).
Define the custom button so that it uses the syntax Calling OLE methodname (using the
method name you created in step 4).

MapInfo’s toolbars are hidden, like the rest of MapInfo’s user interface. The user will not see
the new custom button. Therefore, you may want to add an icon, button, or other visible control
to your client program’s user interface. When the user clicks on your Visual Basic icon or
button, send MapInfo a Run Menu Command ID statement so that your custom toolbutton
becomes the “active” MapInfo tool.

7. If you want MapInfo to notify your client program whenever the user uses a custom menu
command, define a custom menu command (for example, using the Alter Menu ... Add
statement to add an item to one of MapInfo’s shortcut menus). Define the custom menu
command so that it uses the syntax Calling OLE methodname (using the method name you
specified in step 4).

8. Within the method(s) that you defined, issue whatever statements are needed to process the
arguments sent by MapInfo.

9. If you created a SetStatusText method, MapInfo sends a simple text string to the method,
representing the text that MapInfo would display on the status bar. If you want to emulate
MapInfo’s status bar, add code to this method to display the text somewhere in your user
interface.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 238 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
If you created a WindowContentsChanged method, MapInfo sends a four-byte integer
(representing a MapInfo window ID number) to indicate which Map window has changed. Add
code to this method to do whatever processing is necessary in response to the window’s
changing. For example, if you are keeping track of the Map window’s current zoom level, you
may want to call MapInfo’s MapperInfo() function to determine the Map window’s latest zoom
level.

If you are using methods to handle custom buttons or menu commands, MapInfo sends a
comma-delimited string to your custom method. Within your method, parse the string. The
exact format of the string varies, depending on whether the user used a menu command, a
point-mode drawing tool, a line-mode drawing tool, etc. The following section explains the
syntax of the comma-separated string.

Processing the Data Sent to a Callback
Your Integrated Mapping application can create custom MapInfo menu commands and custom
MapInfo toolbar buttons. When the user uses the custom commands or buttons, MapInfo sends your
OLE method a string containing eight elements, separated by commas. For example, the string sent by
MapInfo might look like this:

MI:-73.5548,42.122,F,F,-72.867702,43.025,202,

The contents of the comma-separated string are easier to understand if you are already familiar with
MapBasic’s CommandInfo() function. When you write MBX applications (i.e., programs written in the
MapBasic language and compiled with the MapBasic compiler), you can have your custom menu
commands and custom buttons call MapBasic handler procedures instead of calling OLE methods.
Within a handler procedure, you can call CommandInfo() to determine various information about
recent events. For example, if a MapBasic procedure acts as the handler for a custom drawing-tool
button, the following function call determines whether the user held down the Shift key while using the
drawing tool:

log_variable = CommandInfo(CMD_INFO_SHIFT)

The code CMD_INFO_SHIFT is defined in the MapBasic header file, MAPBASIC.DEF. The following
table lists CommandInfo-related defines, sorted in order of their numeric values.

For an explanation of each code, see CommandInfo() in the MapBasic Reference or online Help.

Value
Codes That Have Meaning

After a Menu Event
Codes That Have Meaning

After a Button Event

1
2
3
4
5
6
7
8 CMD_INFO_MENUITEM

CMD_INFO_X
CMD_INFO_Y
CMD_INFO_SHIFT
CMD_INFO_CTRL
CMD_INFO_X2
CMD_INFO_Y2
CMD_INFO_TOOLBTN
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 239 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
When you create a custom menu command or button that uses the Calling OLE methodname syntax,
MapInfo constructs a string with all eight CommandInfo() return values, separated by commas. The
string begins with the prefix MI: so that your OLE server can determine that the method call was made
by MapInfo.

The string that MapInfo sends to your method is constructed in the following manner:

”MI:” +
CommandInfo(1) + ”,” + CommandInfo(2) + ”,” +
CommandInfo(3) + ”,” + CommandInfo(4) + ”,” +
CommandInfo(5) + ”,” + CommandInfo(6) + ”,” +
CommandInfo(7) + ”,” + CommandInfo(8)

If you assign a unique ID number to each of your custom buttons, you can have all of your buttons call
the same method. Your method can determine which button called it by examining the seventh
argument in the comma-separated string.

Once MapInfo sends the comma-separated string to your method, it is up to you to add code to your
method to parse the string.

Suppose your Integrated Mapping application adds a custom menu command to the MapInfo shortcut
menu. Every time the user chooses that custom menu command, MapInfo sends your OLE method a
comma-separated string. If the custom menu command has an ID number of 101, the string might look
like this:

”MI:,,,,,,,101”

In this case, most of the elements of the comma-separated string are empty, because the
CommandInfo() function can only return one piece of information about menu events (as is indicated
in the table above). Of the eight “slots” in the string, only slot number eight pertains to menu events.

Now suppose you create a custom MapInfo toolbar button that allows the user to click and drag to draw
lines on a map. Every time the user uses that custom drawing tool, MapInfo sends your OLE method a
comma-separated string, which might look like this:

”MI:-73.5548,42.122,F,F,-72.867702,43.025,202,”

In this case, the comma-separated string contains several values, because CommandInfo() is able to
return several pieces of relevant information about toolbutton events. The first two elements indicate
the x- and y-coordinates of the location where the user clicked; the next two elements indicate whether
the user held the Shift and Ctrl keys while clicking; the next two elements indicate the coordinates of
the location where the user released the mouse button; and the last element indicates the button’s ID
number. The final “slot” in the string is empty, because slot number eight pertains to menu events, not
button events.

C/C++ Syntax for Standard Notification Callbacks
The preceding section discussed callbacks in the context of Visual Basic. This section identifies the
specific C-language syntax for MapInfo’s standard callbacks, SetStatusText and
WindowContentsChanged.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 240 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
If you use MapInfo’s SetCallback method, MapInfo can automatically generate notification callbacks to
your IDispatch object. MapInfo’s standard callbacks have the following C syntax:

SCODE SetStatusText(LPCTSTR lpszMessage)

MapInfo calls the SetStatusText method whenever the status bar text changes in MapInfo. The single
argument is the string value of the new status bar text.

SCODE WindowContentsChanged(Unsigned Long windowID)

MapInfo calls the WindowContentsChanged method whenever the contents of a reparented Map
window change. The single argument represents MapInfo’s Integer window ID that identifies which
window changed. This callback is analogous to MapBasic’s WinChangedHandler procedure.

Alternatives to Using OLE Callbacks

As discussed earlier, MapInfo callbacks can use OLE to send information to your client program. In
some cases, however, you may need to set up callbacks that do not use OLE. For example, if you are
developing programs in Visual Basic 3.0, you cannot use OLE for your callbacks, because Visual Basic
3.0 does not allow you to create your own OLE Automation servers.

MapInfo supports two types of callbacks that are not OLE-dependent: Callbacks using DDE, and
callbacks using compiled MapBasic applications (MBX files).

DDE Callbacks
When you create custom toolbar buttons or menu commands, you specify a Calling clause. To handle
the callback through DDE, use the syntax Calling DDE server, topic. Whenever the user uses the
custom button or menu command, MapInfo opens a DDE connection to the DDE server that you
designate, and then sends a string to the DDE topic that you designate. The string uses the format
discussed in the previous section (for example, “MI:, , , , , , 101”).

For an example of a DDE callback, see the sample program FindZip. The Form Load procedure sends
MapInfo an Alter ButtonPad ... Add statement to create a custom toolbar button.

The new toolbutton definition includes the following calling clause:

Calling DDE ”FindZip”, ”MainForm”

Whenever the user clicks on the map using the custom tool, MapInfo opens a DDE connection to the
FindZip application, and then sends a string to the “MainForm” topic. (“MainForm” is the value of the
form’s LinkTopic property.) For an introduction to DDE, see Chapter 4: Using the Development
Environment.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 241 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
MBX Callbacks
If you create a compiled MapBasic application (MBX file), then you can set up your custom buttons and
menu commands so that they call MapBasic procedures in the MBX. In the calling clause, use the
syntax Calling procedure (where procedure is the name of a procedure in the MapBasic program).
After your Visual Basic application launches MapInfo, run your MBX by sending MapInfo a Run
Application statement. For example:

mapinfo.do ”Run Application ””C:\MB\MYAPP.MBX”” ”

For an introduction to creating custom buttons and menu commands, see Chapter 7: Creating the
User Interface.

Online Help
An Integrated Mapping application can invoke MapInfo dialog boxes by using MapInfo’s
RunMenuCommand OLE Method. If your application invokes a MapInfo dialog box, you can control
whether online help is available for the dialog box.

Displaying Standard MapInfo Help
You can allow your users to see the standard MapInfo help on the dialog box. This is the default
behavior. If the user presses F1 while a MapInfo dialog box is displayed, Windows help displays an
appropriate topic from MAPINFOW.HLP (the standard MapInfo help file).

Note: Once the MapInfo help window appears, the user can click various jumps or navigation buttons
to browse the rest of the help file. Users may find this arrangement confusing, because the
MapInfo help file describes the MapInfo user interface, not the user interface of your Integrated
Mapping application.

Disabling Online Help
You can disable all online help for MapInfo dialog boxes by issuing the following MapBasic statement:

 Set Window Help Off

After you issue a Set Window Help Off statement, pressing F1 while on a MapInfo dialog box has no
effect.

Displaying a Custom Help File
You can set MapInfo to use a custom help file. For example, the following MapBasic statement
instructs MapInfo to use the help file CUSTOM.HLP instead of MAPINFOW.HLP:

 Set Window Help File ”CUSTOM.HLP” Permanent

After you issue a Set Window Help File...Permanent statement, pressing the F1 key causes MapInfo
to display online help; however, MapInfo displays the help file that you specify instead of
MAPINFOW.HLP. Use this arrangement if you want to provide online Help for one or more MapInfo
dialogs, but you do not want the user to have access to all of the standard MapInfo help file.

If you want to provide custom help for MapInfo dialog boxes, you must set up your custom help file so
that its Context ID numbers match MapInfo’s dialog box IDs.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 242 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
To determine the ID number of a MapInfo dialog box:

1. Run MapInfo with the -helpdiag command-line argument.
2. Display the MapInfo dialog for which you want to create help.
3. Press F1. Because you used the -helpdiag option, MapInfo displays the dialog’s ID number

instead of displaying help. Make note of the dialog’s ID number.
4. Using your Windows help-authoring software, edit your custom help file, so that your custom

help topic is assigned the same ID number as the MapInfo dialog box.

For example, MapInfo’s Find dialog box has the ID number 2202. If you want to provide your own
online help for the Find dialog box, set up your help file so that your custom help topic has the Context
ID number 2202.

Note the following points:

• MapBasic does not include a Windows help compiler.
• MapInfo’s dialog box ID numbers are likely to change in future versions.

Related MapBasic Statements and Functions

This section lists some of the MapBasic statements and functions that are particularly useful in
Integrated Mapping applications. For details on these statements and functions, see the MapBasic
Reference or online Help.

Statement/Function Name Description

Create Legend Creates a new Legend window.

Map Creates a new Map window.

MenuitemInfoByID()
MenuitemInfoByHandler(),

Determines the status of a MapInfo menu command (for example,
checked or not checked).

Open Table Opens MapInfo tables.

RemoteQueryHandler() Allows MapBasic programs to handle peek requests from DDE clients.

Run Menu Command Simulates user selecting a MapInfo menu command or ButtonPad but-
ton.

SearchInfo() Returns information about the results obtained by SearchPoint() and
SearchRect().

SearchPoint(), SearchRect() Searches the selectable layers of a Map window for objects at a specific
x,y location or objects within a rectangular area. Allows you to emulate
MapInfo’s Info tool or Label tool.

Set Application Window Reparents dialog box windows. Issue this statement once in your client
program, after you have connected to or launched MapInfo.

Set Map Controls many aspects of Map windows.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 243 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
OLE Automation Object Models
The following chart provides an overview of MapInfo’s 6.5 OLE Automation Type Library. Methods and
Properties are described in detail on the following pages.

The Application object represents the instance of MapInfo.

Each object in the MBApplications collection represents a MapBasic application that is currently
running.

Each object in the MBGlobals collection represents a global variable defined by one of the running
MapBasic applications.

Set Next Document Reparents a document window, such as a Map window, to be a child
window of your client program.

Set Window Controls various aspects of MapInfo windows.

Shade, Set Shade Creates or modifies thematic map layers.

SystemInfo() Some values returned by SystemInfo() are specific to Integrated Map-
ping. Example: Specify SYS_INFO_APPLICATIONWND to retrieve the
application’s HWND.

WindowID(), WindowInfo() Return info about MapInfo windows, even reparented windows.

Objects Methods Properties

Do, Eval,
RunCommand,
RunMenuCommand,
DataObject,
SetCallBack

Name, FullName,
Application, Parent,
Version, ProductLevel,
Visible, LastErrorCode,
LastErrorMessage

MBApplications

Item, Count,
Application, Parent

Name, FullName,
Application, Parent

Do, Eval

Collection syntax:

Object syntax:

MBGlobals

Collection syntax:

Object syntax:

Item, Count,
Application, Parent

Value, Name, Type,
Application, Parent

Object

Object and Collection

Application

Objects Methods Properties
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 244 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
The following chart provides additional objects available in MapInfo’s 6.5 OLE Automation Type
Library. Methods and Properties are described in detail on the following pages.

Objects Methods Properties

TableName, Rows,
Fields

Object

Object and Collection

MIMapGen

MISearchInfo

MIRows

MIFields

MISelection

MIRows

MIFields

Workspace, MBApp,
LongLat, SuppressDlgs,
ImageWidth, ImageHeight,
CenterX, CenterY, Zoom

ZoomCenterMap, RenderMap, ZoomMap,
ClickCenterMap, ClickCenterZoomMap,
ClearCosmeticLayer, SQLUnselectAll,
SearchRadius, SearchRadiusExt, SearchPoint,
SearchRect, GetTable, ExportMap,
ExportMapEx, RefreshProperties,
ScreenToMap, MapGenHandler

Value

Name, Type, Width,
DecimalPlaces

TableName, Rows,
Fields

Value

Name, Type, Width,
DecimalPlaces

Do, Eval,
RunCommand,
RunMenuCommand,
DataObject,
SetCallBack

Name, FullName,
Application, Parent,
Version, ProductLevel,
Visible, LastErrorCode,
LastErrorMessage

Application

Objects Methods Properties

MISearchInfo

MIFields

MIFields
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 245 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Properties of the Application Object
The following table lists all of the properties that apply to the Application object. All properties in this
table are read-only, except for Visible and LastErrorCode.

Property Name Functionality

Name Returns application name (“MapInfo Professional”). OLE standard property.
This is the default property for the Application object.

FullName Returns full path to application executable.
OLE standard property.

Application Returns the Application object. OLE standard property.

Parent Returns the Application object of its parent object; for an Application object,
returns itself. OLE standard property.

Version Returns text of current version number, multiplied by 100 (for example, Map-
Info 4.0.0 returns “400”).

ProductLevel Returns integer, indicating which MapInfo product is running. For MapInfo
Professional, returns 200.

Visible Read/write: A boolean value, indicating whether application window is visi-
ble. Read the property to determine the window’s visibility; write the property
to set the window’s visibility.

LastErrorCode Read/write: A small integer value giving the code number of the last MapBa-
sic error that occurred during a Do, Eval, or RunCommand method call.
Note: The code numbers returned here are 1000 higher than the corre-
sponding
MapBasic error code numbers.
Error codes are never automatically cleared to zero; once an error occurs,
the error remains until another error occurs (or until you write a new value to
the property).

LastErrorMes-
sage

Returns a string: The text of the error message that corresponds to LastEr-
rorCode.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 246 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Methods of the Application Object

For example, the following statement uses the Do method to send MapInfo a Map statement:

 mapinfo.Do ”Map From World”

The following statement uses the RunMenuCommand method to execute MapInfo’s menu command
code 1702, which selects MapInfo’s Grabber tool. (To determine a specific numeric value for a menu
code, look in MENU.DEF, or see the table earlier in this chapter.)

 mapinfo.RunMenuCommand 1702

Method Name Functionality

Do(string) Interprets a string as a MapBasic statement, and executes the state-
ment. This method is asynchronous.

Eval(string) Interprets a string as a MapBasic expression, and returns the value
of the expression; returns a string. If the expression has a Logical
value, MapInfo
Professional returns a one-character string, “T” or “F”. This method
is
synchronous.

RunCommand(string) Interprets a string as a MapBasic statement; this is a synonym for
“Do.”

RunMenuCommand(
menuid)

Executes the menu command indicated by the Integer menuid argu-
ment. See example below.
This method activates a standard menu command or button; to acti-
vate a
custom menu command or button, use the Do method to issue a
Run Menu Command ID statement.

DataObject(windowID) Given an integer windowID, returns an IUnknown interface repre-
senting that window. To get a metafile representation of the window,
use QueryInterface for an IDataObject interface.

IDataObject and IUnknown are the only two interfaces defined for
this object.

Note: This is an advanced feature, intended for C programmers.

SetCallBack(IDispatch) Registers the OLE Automation object as a “sink” for MapInfo-gener-
ated
notifications. Only one callback function can be registered at a time.

See Notification Callbacks, earlier in this chapter.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 247 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Properties of the MBApplications Collection
MBApplications is a collection of all the MapBasic applications that MapInfo is currently running. The
properties in the following table are all read-only.

Properties of an Object in MBApplications
Each object in the MBApplications collection is a running MapBasic application. The properties in the
following table are all read-only.

For example, the following statements determine the name of a running MapBasic application:

Dim appsList As Object
Dim firstname As String

Set appsList = mapinfo.MBApplications
If appsList.Count > 0 Then
 firstname = appsList(1).Name
End If

Property Name Functionality

Item Returns IDispatch of a particular programobject object. Argument is a VARI-
ANT type which can evaluate to an integer index (1..Count) or a string value
(name of the program). This is the default property for the MBApplications
collection.

Count Returns the long integer number of objects in the collection (i.e., the number
of
running applications).

Application Returns IDispatch of the MapInfo application object. OLE standard property.

Parent Returns IDispatch of its parent object; for this collection, that’s the MapInfo
application object.
OLE standard property.

Property Name Functionality

Name Returns name of application (for example, “FOO.MBX”).
OLE standard property. This is the default property for an MBApplication
object.

FullName Returns full path to MapBasic application .MBX file. OLE standard property.

Application Returns IDispatch of the application.
OLE standard property.

Property Name Functionality

Parent Returns IDispatch of its parent object; for a programobject, that’s the MapInfo
application object. OLE standard property.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 248 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Methods of an Object in MBApplications

Properties of the MBGlobals Collection
MBGlobals is a collection of all the MapBasic global variables declared by a specific MapBasic
application that is running. The properties in the following table are all read-only.

Properties of an Object in MBGlobals
Each object in the MBGlobals collection is a MapBasic global variable. The properties in the following
table are all read-only, except for the Value property.

Method Name Functionality

Do(string) The specified string is sent to the MapBasic application’s
RemoteMsgHandler procedure.

Eval(string) The specified string is sent to the MapBasic application’s RemoteQueryHandler()
function; the value returned by RemoteQueryHandler is returned.

RemoteQueryHandler() must be defined as a function that returns a string. If the
expression has a Logical value, MapInfo returns a
one-character string, “T” or “F”.

Property Name Functionality

Item Returns IDispatch of a particular mbglobal object. Argument is a VARIANT
type which can evaluate to an integer index (1..Count) or a string value
(name of the
global variable). This is the default property for the MBGlobals collection.

Count Returns the long integer number of objects in the collection (the number of
global variables).

Application Returns IDispatch of MapInfo application object. OLE standard property.

Parent Returns IDispatch of its parent object; for this collection, that’s the progra-
mobject object. OLE standard property.

Property Name Functionality

Value Read/write. Read the property to retrieve a string representing the value of
the
MapBasic global variable; write the property to change the value of the vari-
able. This is the default property for an MBGlobal object.

Name Returns name of the variable. OLE standard property.

Type Returns a text string giving the type of the variable as one of MapInfo
Professional’s standard types (“Integer”, “Date”, etc.).

Application Returns IDispatch of the application. OLE standard property.

Parent Returns IDispatch of its parent object; for an MBglobal object, that’s the
programobject which declared the global variable. OLE standard property.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 249 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
The following Visual Basic example examines and then alters the value of a global variable (g_status)
in a MapBasic application.

Dim globinfo As Object
Dim old_value As Integer

’ Look at the globals used by the first
’ running MapBasic app:
Set globinfo = mapinfo.MBApplications(1).MBGlobals

’ Look at a global’s current value by reading
’ its ”Value” property:
old_value = globinfo(”g_status”).Value

’ Assign a new value to the global:
globinfo(”g_status”) = old_value + 1

The expression globinfo(“g_status”) is equivalent to globinfo(“g_status”).Value because Value is
the default property.

Properties of the MIMapGen Object
The following table lists the properties that apply to the MIMapGen object. The MIMapGen object is
used primarily by MapInfo ProServer applications; however, MapInfo Professional applications can use
the MIMapGen object as well. For examples of using the MIMapGen object model, see the ProServer
documentation.

Property Name Functionality

Workspace Path to a MapInfo workspace file. When you set the property, MapInfo
loads the workspace.

MBApp Path that points to a MapBasic application (MBX file). When you set the
property, MapInfo runs the MBX.

LongLat BOOLEAN: Defines interface coordinate system. When TRUE, all values
that you get and put (using CenterX and CenterY) represent longitude
and latitude. When FALSE, the map window’s coordinate system will be
used.

SuppressDlgs BOOLEAN: If TRUE, an action that invokes a dialog will generate an
error. This includes dialogs invoked as a result of a Run Menu Command
statement.

ImageWidth Width of the image area, in pixels.

ImageHeight Height of the image area, in pixels.

CenterX X-coordinate (for example, Longitude) of the map center.

CenterY Y-coordinate (for example, Latitude) of the map center.

Zoom The width of the map (for example, number of miles across). This number
reflects the units used by the Map window (for example, miles, kilome-
ters).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 250 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Setting the Workspace property is the first step to using the MIMapGen object. MIMapGen is designed
to work in situations where there is a single map window (for example, when a web page shows a
single map). To begin using MIMapGen, set the Workspace property, so that MapInfo loads a
workspace -- typically, a workspace that contains a single Map window. Then you will be able to use
the other methods and properties to manipulate the Map window.

Methods of the MIMapGen Object
The following methods apply to the MIMapGen object.

Method Functionality

ZoomCenterMap() Renders the map based on the current CenterX, CenterY, and Zoom properties.
The map is only regenerated if the center or the zoom have changed since the map
was last rendered.

RenderMap() Same effect as ZoomCenterMap, except that the map is always regenerated.

ZoomMap
(double ZoomFactor)

Zooms the map in or out, to the extent indicated by the zoom factor. Positive num-
bers zoom in; negative numbers zoom out.

ClickCenterMap
(long MouseX,
 long MouseY)

Recenters the map based on the mouse click position. The x/y arguments repre-
sent locations on the map, in pixels.

ClickCenterZoomMap
(long MouseX,
 long MouseY,
 double ZoomFactor)

Recenters the map based on the mouse click position, and zooms the map based
on the zoom factor; negative number zooms out.

ClearCosmeticLayer() Same effect as the Map menu command: Deletes all objects from the Cosmetic
layer.

SQLUnselectAll() Same effect as the Query menu command: De-selects all rows.

SearchRadius
(double CenterPointX,
 double CenterPointY,
 double Radius)

Performs a radius search.

SearchRadiusExt
(double CenterPointX,
 double CenterPointY,
 double OuterPointX,
 double OuterPointY)

Performs a radius search, To define the search circle, specify the center point and a
point that is somewhere along the circle’s radius.

SearchPoint
(double CenterPointX,
 double CenterPointY)

Searches a small area around the specified location.

SearchRect
(double x1, double y1,
 double x2, double y2)

Searches within a rectangular area.

GetTable
(string Tablename)

Returns an MISelection object (IDispatch); to access the contents of the table, use
the MISelection object.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 251 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Tip: The searching methods search only the topmost selectable layer. To access the search results,
see the MISearchInfo object.

Properties of the MISearchInfo Object
The following properties apply to the MISearchInfo object.

To obtain an MISearchInfo object, use one of the MIMapGen object’s search methods: SearchRadius,
SearchRadiusExt, SearchPoint, or SearchRect.

Methods of the MIRow Object
The following method applies to the MIRow object. Each MIRow object represents one record returned
by a search method, or one row in the table specified in the GetTable method call.

ExportMap
(string ImageType,
 string FileSpec)

Generates an image file (for example, a JPEG, TIFF, PNG, PSD, BMP, WMF, or GIF
file) of the Map window. See the MapBasic Save Window statement.

ExportMapEx
(string ImageType,
 string FileSpec, string
CopyrightInfo)

Generates an image file (for example, a JPEG, TIFF, PNG, PSD, BMP, WMF, or GIF
file) of the Map window. See the MapBasic Save Window statement.

RefreshProperties() Updates CenterX, CenterY, Zoom, ImageHeight, and ImageWidth.

ScreenToMap
(long ScreenX,
 long ScreenY,
 double MapX,
 double MapY)

Converts screen coordinates (pixels) into map coordinates (for example, longitude /
latitude).

MapGenHandler
(string Message)

Calls the MapBasic sub procedure RemoteMapGenHandler in the MBX application
that was executed through the MBApp property. Use this method to run MapBasic
statements in an MBX file.

Property Functionality

Rows This property returns an MIRows collection (a collection of MIRow objects). The collection
represents the search results.

Fields This property returns an MIFields collection (a collection of MIField objects). The collection
represents a set of field definitions (field names, etc.) describing the search results.

TableName String: The name of the table that contains the search results.

Method Functionality

Value Returns a pointer to the data value for the given column specified by using a variant arg. The
allowed variant types are VT_12, VT_14, and VT_BSTR (where the VT_BSTR is the column
name).

Method Functionality
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 252 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Tip: To obtain a collection of MIRow objects, reference the Rows property of the MISearchInfo object or
the MISelection object.

Properties of the MIField Object
The following properties apply to the MIField object. Each MIField object describes one of the data
columns in the latest search results, or one of the data columns in the table specified in the GetTable
method call.

Tip: To obtain a collection of MIField objects, reference the Fields property of the MISearchInfo object
or the MISelection object.

 Properties of the MISelection Object
The following properties apply to the MISelection object.

To access the MISelection object, use the GetTable method from the MIMapGen object.

MapInfo Command-Line Arguments

If you use DDE to communicate with MapInfo, you will need to launch MapInfo manually (for example,
by calling Visual Basic’s Shell() function) before you establish the DDE connection. When you launch
MapInfo 4.0 for Windows, you can use any of the command-line arguments listed below. If you want
the user to remain unaware that MapInfo is running, you will want to specify one of the following
arguments.

Property Functionality

Name String: The name of the column.

Type Short: The data type of the field. The following values are valid: (1)
DT_CHAR, (2) DT_DECIMAL, (3) DT_INTEGER, (4) DT_SMALLINT,
(5) DT_TIME, (6) DT_LOGICAL, (8) DT_FLOAT.

Width Short: The width of the field; applies to DT_CHAR and DT_DECIMAL
fields only.

DecimalPlaces Short: The number of decimal places in a DT_DECIMAL field.

Property Functionality

Rows This property returns an MIRows collection (a collection of MIRow objects).
The collection represents all of the rows in a table.

Fields This property returns an MIFields collection (a collection of MIField
objects). The collection represents the field definitions (field names, etc.)
for the table that was specified in the GetTable method.

TableName String: The name of the table that was specified in the GetTable method.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 253 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Note: The forward slash (“/”) can be used instead of the minus sign.

Getting Started with Integrated Mapping and Visual C++ with MFC
The remainder of this chapter will walk you through the creation of an Integrated Mapping application
using Microsoft Visual C++ with MFC. These instructions are written primarily for users of the 32-bit
Visual C++ (version 2.0 or higher), but they have also been tested with the 16-bit version of Visual C++
(version 1.52). Differences are noted where appropriate.

Create a New Project
1. Run Visual C++ 2.x (32-bit) or 1.5x (16-bit).
2. Choose File > New to create a new project (Project > AppWizard... in v1.5).
3. Make the project an MFC AppWizard application, and choose the options that you want. For

your first demonstration, it’s easiest to make the application a single document application
(SDI), rather than supporting multiple documents (MDI). Note well that you’re not required to
enable any of the standard OLE support. If you want to use callbacks to your application from
MapInfo, you should enable support for OLE Automation in Step 3 of 6 of the MFC AppWizard.

4. Build the application and run it to verify that everything starts out ok.

Command-Line
Argument Effect

-nosplash MapInfo runs without showing its splash screen, although the main
MapInfo window still shows.

-server MapInfo runs without showing a splash screen or main window. Use
this argument when you want MapInfo to act as a behind-the-
scenes server to another application (using DDE).

-automation or -embed-
ding

MapInfo runs without displaying a splash screen or main window.
Additionally, MapInfo registers its OLE Class Factory with the OLE
subsystem, which allows MapInfo to act as a behind-the-scenes
OLE server to another application.

-regserver MapInfo registers its OLE capabilities in the registration database,
then exits. Run MapInfo with this argument once, when you install
MapInfo. Note that MapInfo automatically registers itself when it is
run normally. Note very well that this registers everything about the
MapInfo product ’ OLE Automation, OLE Embedding, etc.

-unregserver MapInfo removes all references to itself from the registration data-
base and exits. Use this option at uninstall time to remove MapInfo
from the system registry. Using this argument unregisters everything
that the -regserver option registered.

-helpdiag This argument sets a flag in MapInfo, so that MapInfo displays a
diagnostic dialog every time you press F1 for online Help. For more
information on Help issues, see the discussion earlier in this chap-
ter.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 254 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Add OLE Automation Client Support
If you did not choose any OLE support during the AppWizard phase, you must add OLE Automation
client support now.

1. Open STDAFX.H and add these lines:
#include <afxole.h>
#include <afxdisp.h>

2. Open your main program source file (i.e., projectname.CPP) and add the following lines to the
beginning of CprojectnameApp::InitInstance:

if (!AfxOleInit()) {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
}

3. Add the message string by opening your resource file (i.e., projectname.RC), open the “String
Table” resource, and pick Resource > New String (in v1.5, you need to use AppStudio to add
the string). In the properties dialog box that appears, set ID: to “IDP_OLE_INIT_FAILED”, and
Caption: to “OLE initialization failed. Make sure that the OLE libraries are the correct version.”
Close the properties box by clicking in the close box. Then close the resource windows and
save the changes when prompted.

Create the MapInfo Support class, and create an instance of it
In Project > ClassWizard (Browse > ClassWizard in v1.5), choose the OLE Automation tab, and click
the “Read Type Library” button. Navigate to your MapInfo program directory and select the
MAPINFOW.TLB file. Click OK to confirm the classes to be created. This creates the classes that allow
you to access MapInfo through the OLE Automation interface.

Open your main program source file (i.e., projectname.CPP) and add the following lines of code.

• After all of the other #includes add:
 #include ”MapInfow.h”

• Just below the declaration “CprojectnameApp theApp”, add the following variable declaration:
 DMapInfo mapinfo;

• Near the end of CprojectnameApp::InitInstance, but before the OnFileNew() call, add:
 mapinfo.CreateDispatch(“MapInfo.Application”);

Open the file MAPINFOW.H and add the following lines at the bottom of the file:

 extern DMapInfo mapinfo;
 #include ”path-to-mapbasic-directory\mapbasic.h”

If you’re using Visual C++ v1.5, you must additionally add the OLE libraries to the link command line
(Visual C++ v2.x does this automatically). Do this by choosing Options > Project... and clicking the
Linker... button. Choose the “Common to both” radio button, and add the following libraries to the
Libraries: text box:

 compobj, storage, ole2, ole2disp, ole2nls, mfcoleui
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 255 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Test your work
Add one more line of code at the end of the CprojectnameApp::InitInstance function, immediately
following the CreateDispatch call added above:

::MessageBox(0, mapinfo.GetFullName(), mapinfo.GetName(), MB_OK);

Rebuild your program. When you run, you will get a message box on startup with the title “MapInfo
Professional” and the full path to the MapInfo executable in the message area. This demonstrates that
you are successfully launching MapInfo and accessing through OLE Automation. You probably want to
comment out or remove the ::MessageBox call as you work through the rest of this exercise.

Redefine the Shortcut Menus
When we incorporate a Map into our application, we’ll get all of the functionality that MapInfo provides
for that Map automatically. Sometimes, this functionality is not appropriate. The place where this
occurs most often is in the default shortcut menu (accessed by right-clicking on the Map), which
includes at least one inappropriate command: Clone Map. To eliminate the inappropriate command,
redefine the shortcut menu.

Near the end of CprojectnameApp::InitInstance, just after the CreateDispatch call we added, we’ll do
our additional initialization:

// disable the help subsystem: not used in this application
mapinfo.Do(”Set Window Help Off”);
// Reprogram the mapper shortcut menu
mapinfo.Do(”Create Menu \”MapperShortcut\” ID 17 as \”(-\””);

This is also a good time to do other initialization, such as opening tables that you know you’ll need.

Reparenting MapInfo’s Dialogs
It’s important to reparent MapInfo’s dialogs to your application window in case MapInfo needs to
interact with the user. By doing this, you ensure that the dialog appears over your application and that
your application window is disabled while the user interacts with the MapInfo dialog. This one
statement reparents both dialogs that you ask MapInfo to show (for example, by using
RunMenuCommand with predefined item numbers) and error and warning messages that MapInfo
shows in response to unusual events.

In MainFrm.CPP, function CMainFrame::OnCreate, we need to do the following:

• After all of the other #includes add:
#include ”MapInfow.h”

• At the end of CMainFrame::OnCreate, add:
char str[256];
sprintf(str, ”Set Application Window %lu”, (long)(UINT)m_hWnd);
mapinfo.Do(str);

Demonstrate that this works by adding the following statement to the CprojectnameApp::InitInstance
function, just after the OnFileNew() call. This will cause MapInfo to display one of its standard dialogs
within the context of your application:

mapinfo.Do(”Note \”Hello from MapInfo\””);

Please test your application at this point to ensure that it is working properly.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 256 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Adding a Map to your View
Now that you have a functioning MFC application that attaches to MapInfo through OLE Automation,
you can start taking advantage of MapInfo’s capabilities. In particular, we’ll now add a Map to this
application.

Go to the Project > ClassWizard (Browse > ClassWizard in v1.5) dialog box. Select the view class
(CprojectnameView), and the “Message Maps” tab. Select the “CprojectnameView” object in the
leftmost listbox.

In the Messages listbox, select “WM_CREATE”, then press Add Function; select “WM_DESTROY”,
then press Add Function; and select “WM_SIZE”, then press Add Function.

In the view header file (projectnameVW.H), add the following member variables to the view class:

unsigned long m_windowid;
HWND m_windowhwnd;

In the view source file (projectnameVW.CPP), add the following:

• After all of the other #includes add:
#include ”MapInfow.h”

• In the constructor (CprojectnameView::CprojectnameView), initialize the variables:
m_windowid = 0;
m_windowhwnd = 0;

• In the OnCreate method, add the following code after the call to CView::OnCreate:
//must have ClipChildren style for integratable maps to work
SetWindowLong(m_hWnd, GWL_STYLE,
 GetWindowLong(m_hWnd, GWL_STYLE)
 |WS_CLIPCHILDREN);
char str[256];
mapinfo.Do(”Open Table \”States\” Interactive”);
sprintf(str,
 ”Set Next Document Parent %lu Style 1 Map From States”,
 (long)(UINT)m_hWnd);
mapinfo.Do(str);
m_windowid = atol(mapinfo.Eval(”WindowID(0)”));
sprintf(str, ”WindowInfo(0, %u)”, WIN_INFO_WND);
m_windowhwnd = (HWND)atol(mapinfo.Eval(str));

• In the OnDestroy method, add the following code before the call to CView::OnDestroy:
if (m_windowhwnd) {
 ::DestroyWindow(m_windowhwnd);
 m_windowhwnd = NULL;
 m_windowid = 0L;
}

• In the OnSize method, add the following code after the call to CView::OnSize:
if (m_windowhwnd && cx > 0 && cy > 0) {
 ::MoveWindow(m_windowhwnd, 0, 0, cx, cy, TRUE);
}

MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 257 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Adding a Map Menu Command
All menu items can be added using the example procedure described below. The example shows how
to add a “Map>Layer Control” menu item.

1. Open your resource file (i.e., projectname.RC), open the “Menu” resource, and select
IDR_MAINFRAME. (In Visual C++ 1.5, you’ll need to use the AppStudio to edit the resources.)

2. Add a new main menu item titled “Map”. Under “Map” add a “Layer Control” item and save the
changes to the RC file.

3. In Project > ClassWizard (Browse > ClassWizard... in v1.5), chose the Message Map tab, and
select CprojectnameView from the Class Name list. In the Object ID’s list select the ID that
maps to the menu item you just created - this will be ID_MAP_LAYERCONTROL by default.
Once you select this, the COMMAND and UPDATE_COMMAND_UI messages will appear in
the Messages window. Add function prototypes for each message by selecting each and
pressing Add Function, accepting the default names generated.

4. In your CprojectnameView class you’ll see both functions added. Add the following lines of
code to the function bodies.

void CprojectnameView::OnMapLayercontrol()
{
 mapinfo.RunMenuCommand(M_MAP_LAYER_CONTROL);
}
void CprojectnameView::OnUpdateMapLayercontrol(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_windowid);
}

Adding Toolbar Buttons and Handlers

All toolbar buttons can be added using the example procedure described below. The example will
show how to add the MapInfo selector, grabber, zoom-in, and zoom-out tools to the toolbar. For
convenience, we’ll also add them to a new menu named Tools; this makes adding them to the toolbar a
little easier using the ClassWizard.

1. First, follow the instructions listed above (Adding a Map Menu Command) and create a new
menu named Tools, with four new items (Selector, Grabber, Zoom-In, Zoom-Out). Define the
UPDATE_COMMAND_UI and COMMAND functions as before, using the appropriate codes
from the MAPBASIC.H file for each tool (M_TOOLS_SELECTOR, M_TOOLS_RECENTER,
M_TOOLS_EXPAND, and M_TOOLS_SHRINK, respectively). Compile and test your
application when you’re done.

2. Open the project RC file, select the bitmap resource IDR_MAINFRAME, and make the bitmap
64 pixels wider (room for 4 more 16-pixel buttons). Move the images of the last several buttons
to the right, making room just after the “paste” button. Draw appropriate images for the four
new tools, for example, an arrow (selector), a hand (grabber), a magnifying glass (zoom-in),
and a magnifying class with a minus sign (zoom-out).

3. Open the String resource, add new strings for each of the new tools. Use the same IDs as you
used when creating the menu items earlier; the strings should be a descriptive string followed
by “\n” and the tooltip text. For example, ID_TOOLS_SELECTOR as “Select map
objects\nSelector”; ID_TOOLS_GRABBER as “Recenter the map\nGrabber”;
ID_TOOLS_ZOOMIN as “Zoom-In to show less area, more detail\nZoom-In”; and
ID_TOOLS_ZOOMOUT as “Zoom-Out to show more area, less detail\nZoom-Out”.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 258 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
4. In MAINFRM.CPP locate the static UINT BASED_CODE buttons[] array and insert the ID
constants into the array in the same position that they appear in the bitmap resource.

5. In order to get the user interface right, we need to keep track of which tool is currently selected.
In the CprojectnameView header file, add an integer variable to keep track of this:

 int m_eMouseMode;

6. Initialize this variable in the class constructor, to represent the initial state of the map. Note that
we’ll use the MapInfo constants for the various tools to keep track of which one is selected.

 m_eMouseMode = M_TOOLS_SELECTOR;

7. If you created the menu items first, you already have COMMAND and
UPDATE_COMMAND_UI entries in the message map; if not, you should add them now.

8. Update the user interface by calling CCmdUI::SetRadio in each OnUpdate routine, and set the
m_eMouseMode variable accordingly in each OnToolsToolname handler. That is, your routines
should now read as follows:

void CprojectnameView::OnToolsSelector()
{

m_eMouseMode = M_TOOLS_SELECTOR;
mapinfo.RunMenuCommand(M_TOOLS_SELECTOR);

}
void CprojectnameView::OnToolsGrabber()
{

m_eMouseMode = M_TOOLS_RECENTER;
mapinfo.RunMenuCommand(M_TOOLS_RECENTER);

}
void CprojectnameView::OnToolsZoomin()
{

m_eMouseMode = M_TOOLS_EXPAND;
mapinfo.RunMenuCommand(M_TOOLS_EXPAND);

}
void CprojectnameView::OnToolsZoomout()
{

m_eMouseMode = M_TOOLS_SHRINK;
mapinfo.RunMenuCommand(M_TOOLS_SHRINK);

}
void CprojectnameView::OnUpdateToolsSelector(CCmdUI* pCmdUI)
{

pCmdUI->SetRadio(m_eMouseMode == M_TOOLS_SELECTOR);
pCmdUI->Enable(m_windowid);

}
void CprojectnameView::OnUpdateToolsGrabber(CCmdUI* pCmdUI)
{

pCmdUI->SetRadio(m_eMouseMode == M_TOOLS_RECENTER);
pCmdUI->Enable(m_windowid);

}
void CprojectnameView::OnUpdateToolsZoomin(CCmdUI* pCmdUI)
{

pCmdUI->SetRadio(m_eMouseMode == M_TOOLS_EXPAND);
pCmdUI->Enable(m_windowid);

}
void CprojectnameView::OnUpdateToolsZoomout(CCmdUI* pCmdUI)
{

pCmdUI->SetRadio(m_eMouseMode == M_TOOLS_SHRINK);
pCmdUI->Enable(m_windowid);

}

MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 259 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
Using Exception Handling to Catch MapInfo Errors
MapInfo communicates error conditions to the Integrated Mapping application using the MFC
COleDispatchException class. MapInfo returns the error code in the COleDispatchException member
variable m_wCode, and a description string in the COleDispatchException member variable
m_strDescription. Other general OLE exceptions are passed via the COleException class. You must
handle these exceptions somewhere in your application; if not, the top-level MFC exception handler
will be invoked and will get the message “Command failed”. You can add handlers for each type of
exception in each of the DMapInfo methods. The following illustrates this in the DMapInfo::Do method.

The original DMapInfo::Do method, as generated by the ClassWizard, looks like this:

void DMapInfo::Do(LPCTSTR command)
{

static BYTE BASED_CODE parms[] = VTS_BSTR;
InvokeHelper(0x6001000b, DISPATCH_METHOD, VT_EMPTY,

NULL, parms, command);
}

The improved DMapInfo::Do method, with exception handling built-in, looks like this:

void DMapInfo::Do(LPCTSTR command)
{
 static BYTE BASED_CODE parms[] = VTS_BSTR;
 try {

 InvokeHelper(0x6001000b, DISPATCH_METHOD, VT_EMPTY,
 NULL, parms, command);

 }
 catch(COleDispatchException *e) {
 // Handle the exception in a manner appropriate to your
 // application. The error code is in e->m_wCode.

 AfxMessageBox(e->m_strDescription);
 e->Delete();

 }
 catch(COleException *e) {

 AfxMessageBox(”Fatal OLE Exception!”);
 e->Delete();

 }
}

Add OLE Automation Server Support
In your CprojectnameDoc.cpp file, add the Dispatch map after the Message map.

 BEGIN_DISPATCH_MAP(CprojectnameDoc, CDocument)
 //{{AFX_DISPATCH_MAP(CprojectnameDoc)
 //NOTE:The ClassWizard will add and remove mapping macros here
 //DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_DISPATCH_MAP
 END_DISPATCH_MAP()

In your CprojectnameDoc.cpp file, add to the CprojectnameDoc constructor:

EnableAutomation();
AfxOleLockApp();

In your CprojectnameDoc.cpp file, add to the CprojectnameDoc destructor:

AfxOleUnlockApp();
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 260 MB_UG.pdf

User Guide Chapter 12: Integrated Mapping
In your CprojectnameDoc.h header file, add the Dispatch section after the message map:

// Generated OLE dispatch map functions
//{{AFX_DISPATCH(CprojectnameDoc)
 //NOTE:The ClassWizard will add and remove member functions here.
 //DO NOT EDIT what you see in these blocks of generated code !
//}}AFX_DISPATCH
DECLARE_DISPATCH_MAP()

Note: The above code fragments illustrate adding automation support to your CDocument derived
class. When using MFC, you can add automation support just as easily to any class derived
from CCmdTarget. Thus, for an MDI application, you will want to attach the automation
interface to either your CWinApp derived class or your CMDIFrameWnd derived class, both of
which are derived from CCmdTarget because you only want to set the IDispatch pointer for
MapInfo callbacks once. In an MDI application, documents and their views are destroyed
when closed. If you set the IDispatch pointer to a document, it will no longer be valid when the
document is closed.

Adding the WindowContentsChanged Callback
If you’re writing an SDI application and you added the automation DISPATCH message map to your
CprojectnameDoc class, then you can set the callback pointer in your CprojectnameDoc constructor,
or any where else where it will only be called once.

mapinfo.SetCallback(this->GetIDispatch(FALSE));

In Project > Class Wizard, choose the OLE Automation tab, and select from the Class Name list the
class that has OLE Automation enabled (for this example it is your CprojectnameDoc class). Choose
“Add Method” and fill in the method name as “WindowContentsChanged”, return type as “SCODE”,
and argument list as “long lWindowID”. When you Choose OK and exit the dialog, the Class Wizard
automatically updates your CprojectnameDoc cpp and header file. In the cpp file, fill in the function
body of WindowContentsChanged to do any post processing necessary. For example, this is a good
place to do legend maintenance.

Learning More

To learn more about Integrated Mapping, look at the sample programs provided with the MapBasic
development environment. The following samples are provided:

• Samples\VB\FindZip: Visual Basic program, used as an example throughout this chapter.
• Samples\VB\VMapTool: Visual Basic program that demonstrates advanced tasks, such as

callbacks; requires Visual Basic 4.0 Professional Edition.
• Samples\MFC\FindZip: A sample MFC application.
• Samples\PwrBldr\Capitals: A sample 16-bit PowerBuilder application. You must have the

PowerBuilder runtime environment on your system to run it.
• Samples\Delphi\TabEdMap: A sample Delphi application.

Check the Samples directory (within the MapBasic directory) for additional samples that may have
been added after this manual was printed.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 261 MB_UG.pdf

A
Sample Programs
The MapBasic software includes the following sample program files.

Note: Additional examples may have been added after the
printing of this manual.

Sections in this Appendix:

Samples\Delphi Folder. 263
Samples DLLEXAMP Folder . 263
Samples\MapBasic Folder . 263
Samples\MFC Folder . 268
Samples\PwrBldr Folder . 268
Samples\VB4 Folder. 268
Samples\VB6 Folder. 269

User Guide Appendix A: Sample Programs
Samples\Delphi Folder

 tabmap: run MapInfo as an OLE server using Delphi.

Samples DLLEXAMP Folder

Samples\DLLEXAMP\Loadlib Folder
loadlib: The files in this directory are the source code to a C language DLL that can be compiled for
either Win16 or Win32, and a test program written in MapBasic that exercises the function in the DLL.

Samples\DLLEXAMP\ResDLL Folder
Contains sample programs to demonstrate techniques for Win16 & Win32 compatibility.

Samples\MapBasic Folder
The Samples\MapBasic\ folder contains subfolders that include sample program files. The contents of
each subfolder is described in the following sections.

Samples\MapBasic\Animator Folder
Animator.mb: demonstrates how Animation Layers can speed up the redrawing of Map windows.

Samples\MapBasic\Appinfo Folder
AppInfo.mb: retrieves information about the MapBasic applications that are currently running.

Samples\MapBasic\Autolbl Folder
AutoLbl.mb: “labels” a map by placing text objects in the Cosmetic layer (emulating the way earlier
versions of MapInfo created labels).

Samples\MapBasic\Cogoline Folder
COGOLine.mb: draws a line at a specified length and angle.

Samples\MapBasic\Coordinateextractor Folder
Coordinateextractor.mb: updates two columns with the x and y coordinates in the table’s native
projection or a user selected projection for each object in the table.

Samples\MapBasic\Csb Folder
CoordSysBounds.mb: enables you to check and set the coordinate system bounds of any mappable
MapInfo base table.

Samples\MapBasic\Database Folder
Autoref.mb: refreshes linked tables every (Interval) seconds

BuildSQL.mb: allows you to connect to DBMS databases, build, save and load queries. run queries
and previews or download the results.

Connect.mb: provides the MapInfo DBMS Connection Connection Manager dialog and related
functions. The connection manager allows you to select an existing connection to use, disconnect
existing connections, and get new connections.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 263 MB_UG.pdf

User Guide Appendix A: Sample Programs
DescTab.mb: provides a dataLink utility function that given a table opens a dialog box that describes it.

DLSUtil.mb: returns the list value at the selection index for Dialog List control processing.

GetMITab.mb: MapInfo table picker dialog.

MIODbCat.mb: This is the DBMS Catalog tool that is loaded from the MapInfo Professional Tool
Manager. This allows the database administrator to create a MapInfo User with the with a
MAPINFO_MAPCATALOG table. It also allows the DBA to delete a table from the catalog.

MIRowCnt.mb: This is the DBMS Count Rows in Table tool that is loaded from the MapInfo
Professional Tool Manager. This tool lets you connect to DBMS databases and run a count(*) against
tables, updating the mapcatalog with the results.

MISetMBR.mb: This is the CoordSysBounds tool that is loaded from the MapInfo Professional Tool
Manager. This tool allows the DBA to change the bounds of a table in the MapInfo_MAPCATALOG
table.

MIUpldDB.mb: provides the ability to generate the Database specific SQL statements allowing you to
upload a MapInfo table.

MIUpLoad.mb: This is the Spatialize SQL Server Table tool that is loaded from the MapInfo
Professional Tool Manager. This tool provides the ability to upload a MapInfo table to a remote
database with spatial column information. The Spatial columns are used with DBMS linked tables,
which allows a remote database table to be mappable in MapInfo.

PickCol.mb: Server table column picker dialog

PickSel.mb: provides a selection picker dialog as part of the BuildSQL.mbx.

PickTab.mb: provides functions to get a list of server database tables, and table owners (schemas),
and contains a generic function that provides a table selection dialog.

PrepSQL.mb: SQL Query prepare function that processes query parameters. The parameters are
bound here (resolved and replaced with a value).

SQLPVW.mb: Given an SQL query string with embedded parameters of a specific format, resolves
each parameter to a value and return the resolved SQL query string.

SQLUtil.mb: provides many utility functions that enable Mapinfo to access to ODBC data.

SQLView.mb: SQL DataLink application for testing the SERVER_COLUMNINFO function for all
options (except VALUE).

Samples\MapBasic\Disperse Folder
disperse.mb: takes points at given coordinates and disperses them either randomly or systematically.

Samples\MapBasic\DMSCnvrt Folder
DMSCnvrt.mb: converts between columns of Degree/Minute/Second coordinates and columns of
decimal-degree coordinates.

Samples\MapBasic\Georeg Folder
Georeg.mb: opens a GeoTIFF raster image, registers the image so it can be displayed within MapInfo,
and then displays the GeoTIFF image.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 264 MB_UG.pdf

User Guide Appendix A: Sample Programs
Samples\MapBasic\Geoset Folder
Geoset.mb: enables you to create a MapX or MapXtreme Geoset from the layers and settings of a
MapInfo Professional Map window, or to read a MapX or MapXtreme Geoset files to load the
corresponding tables and layer settings to a MapInfo Professional Map window.

Samples\MapBasic\GridMakr Folder
GridMakr.mb: creates a grid (graticule) of longitude/latitude lines.

Samples\MapBasic\HTMLImageMap Folder
HTMLImageMap.mb: creates a clickable HTML image map from a MapInfo map window for use in a
web browser.

Samples\MapBasic\IconDemo Folder
IconDemo.mb: demonstrates the built-in ButtonPad icons provided in MapInfo

Samples\MapBasic\Inc Folder
inc: contains include files that can be useful when programming in the MapBasic environment.

Among these files are:

Definition (.DEF) files used by various of the MapBasic tools installed with MapInfo Professional.
AUTO_LIB.DEF and RESSTRNG.DEF are needed by the Tool Manager registration system and the
tools’ string localization module, respectively (both of these are stored in the \LIB folder.)

MAPBASIC.DEF contains, among other things, the definitions for general purpose macros, logical
constants, angle conversion, colors, and string length. These are used as inputs for various MapBasic
functions.

MENU.DEF contains the definitions needed to access and/or modify MapInfo Professional's dialogs,
toolbars, and menu items.

MAPBASIC.H is the C++ version of MAPBASIC.DEF plus MENU.DEF.

MAPBASIC.BAS is the Visual Basic 6.0 version of MAPBASIC.DEF plus MENU.DEF.

Samples\MapBasic\Labeler Folder
labeler.mb: allows you to transfer your layers labels into permanent text objects, allow you to label the
current selection, and allow you to use a label tool and individually label objects into permanent text
objects.

Samples\MapBasic\Legends Folder
Legends.mb: allows you to manage two or more Legend windows in MapInfo. (The standard MapInfo
user interface has only one Legend window.)

Samples\MapBasic\Lib Folder
lib: contains a library of functions and subroutines that can be useful when programming in the
MapBasic environment.

In particular, two of these files are used by many of the MapBasic tools installed with MapInfo
Professional:

AUTO_LIB.MB is used by most tools to help register themselves into the Tools directory.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 265 MB_UG.pdf

User Guide Appendix A: Sample Programs
RESSTRNG.MB is used by the localized tools to look up the appropriate language strings in the tools’
.STR files.

Samples\MapBasic\Linesnap Folder
linesnap.mb: allows you to trim or extend a single-segment line to its intersection point with another
chosen line.

Samples\MapBasic\Mapwiz Folder
mapwiz.mb: provides a template which can be used to create a Tool Manager application.

Samples\MapBasic\NorthArrow Folder
northarrow.mb: MapBasic program to create North Arrows.

Samples\MapBasic\Packager Folder
packager.mb: packages a copy of a workspace into a single directory for easier backups,
compression, or transfer between computers.

Samples\MapBasic\Regvector Folder
regvector.mb: allows you to copy a table of vector objects (regions, polylines, points, etc.) from one
location to another by specifying target locations for three points in the original table.

Samples\MapBasic\RingBuffer Folder
ringbuf.mb: allows you to create multiple "donut" ring buffers. It also will calculate sums and averages
of underlying data within each ring.

Samples\MapBasic\RMW Folder
rotatemapwindow.mb: enables you to rotate the contents of the current map window a specific
number of degrees.

Samples\MapBasic\RotateLabels Folder
rotatelabels.mb: allows you to rotate labels.

Samples\MapBasic\RotateSymbols Folder
rotatesymbols.mb: allows you to rotate symbols in a table.

Samples\MapBasic\SeamMgr Folder
seammgr.mb: creates and manages seamless map tables.

Samples\MapBasic\Send2mxm Folder
send2mxm.mb: allows you to write custom MapX Geoset and associated .tab files to create a user-
defined subset of a map window's background data for display on a mobile device.

Samples\MapBasic\Shields Folder
Shields.mb: draws decorative frames around text objects. Note that this application only works with
true text objects, not map labels.

Samples\MapBasic\Snippets Folder
The Snippets folder contains sample programs and code snippets that you can incorporate into your
custom MapInfo applications.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 266 MB_UG.pdf

User Guide Appendix A: Sample Programs
Note: In addition to containing sample code snippets, this folder also contains three tools that are
installed with MapInfo Professional Tool Manager. These are the Named Views tool
[NVIEWS.MBX], the Overview tool [OVERVIEW.MBX] and the Scalebar drawing tool
[SCALEBAR.MBX].

acad.mb: uses DDE to communicate with AutoCAD for Windows.

addnodes.mb: adds nodes to objects. This can be useful if you intend to project a map; the added
nodes prevent slivers from appearing between regions in situations where a large region has a long,
straight edge.

geocode.mb: demonstrates how to geocode through MapBasic.

geoscan.mb: scans a table to predict a geocoding hit-rate.

get_tab.mb: this is a module, not a complete application. get_tab contains routines to display a dialog
that presents the user with a list of open tables. For an example of using the get_tab routines, see the
OverView application.

nviews.mb: a “named views” application; lets you enter a name to describe your current “view” of a
map (current center point and zoom distance). Once a view is defined, you can return to that view by
double-clicking it from the Named Views dialog. To link this application, use the project file nvproj.mbp.

objinfo.mb: displays descriptive information about an object.

overview.mb: opens a second Map window to show an overview of the area in an existing Map
window. As you zoom in or out or otherwise change your view in the original map, the overview window
adjusts automatically. To link this application, use the project file obproj.mbp

scalebar.mb: draws a distance scale bar on a map window. To link this application, use the project file
sbproj.mbp.

textbox.mb: the sample program used as an example throughout this manual. A printout of the
TextBox program appears in Appendix B. To link this application, use the project file tbproj.mbp.

watcher.mb: uses DDE to communicate with Microsoft Excel; sets up an Excel worksheet to monitor
global variables in a MapBasic application.

Samples\MapBasic\Spider Graph Folder
Spider Graph: draws lines between objects in a single table, or the objects from two tables based on a
join. It then creates a new table of lines that connect the objects from the original table(s) based on
matching column names.

Samples\MapBasic\Srchrepl Folder
Srchrepl: performs search-and-replace operations within a table.

Samples\MapBasic\SWSpatialize Folder
sw_spatialize: allows an existing SQL Server table that has not been set up for spatial data to be
spatialized. When a SQL Server table is spatialized, it can have spatial data inserted into and extracted
from it.

Samples\MapBasic\Symbol Folder
symbol: allows you to create/edit/delete MapInfo symbols. Editor that lets you customize the MapInfo
3.0 symbol set.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 267 MB_UG.pdf

User Guide Appendix A: Sample Programs
Samples\MapBasic\SyncWindows Folder
syncwindows: synchronizes mapper windows, creates objects in all mapper windows, tiles windows,
clears cosmetic layter in all map windows.

Samples\MapBasic\Tablemgr Folder
tablemgr: lists all open tables in a list box and provides more information about a table as the user
clicks on it. Also allow the user to set some table properties and view table metadata.

Samples\MapBasic\Template Folder
templates

Samples\MapBasic\Winmgr Folder
winmgr: allows you to set the title of a document window title and set the default view for a table.

Samples\MFC Folder

FindZip: Demonstrates how Integrated Mapping allows you to integrate elements of MapInfo into a
C++ program written using Microsoft Foundation Class (MFC).

mdimfc: contains header files and other supporting files.

Samples\PwrBldr Folder

Capitals: An Integrated Mapping application using PowerBuilder. Note: The PowerBuilder runtime
libraries are not provided; you must already have PowerBuilder libraries installed to run this
application.

Samples\VB4 Folder

Callback: OLE automation callbacks.

FindZip: Demonstrates how Integrated Mapping allows you to integrate elements of MapInfo, such as
a Map window, into a Visual Basic program. Requires Visual Basic 3.0 or later.

VMapTool: A demonstration of advanced Integrated Mapping tasks, such as callbacks. Requires
Visual Basic 4.0 Professional Edition or later.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 268 MB_UG.pdf

User Guide Appendix A: Sample Programs
Samples\VB6 Folder

Callback: OLE automation callbacks.

FindZip: Demonstrates how Integrated Mapping allows you to integrate elements of MapInfo, such as
a Map window, into a Visual Basic program. Requires Visual Basic 3.0 or later.

VMapTool: A demonstration of advanced Integrated Mapping tasks, such as callbacks. Requires
Visual Basic 4.0 Professional Edition or later.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 269 MB_UG.pdf

B
Summary of Operators
Operators act on one or more values to produce a result. Operators can
be classified by the data types they use and the type result they produce.

Sections in this Appendix:

Numeric Operators . 271
Comparison Operators. 272
Logical Operators. 272
Geographic Operators . 273
Automatic Type Conversions . 275

User Guide Appendix B: Summary of Operators
Numeric Operators

The following numeric operators act on two numeric values, producing a numeric result.

Two of these operators are also used in other contexts. The plus sign acting on a pair of strings
concatenates them into a new string value. The minus sign acting on a single number is a negation
operator, producing a numeric result. The ampersand also performs string concatenation.

Operator Performs Example

+ addition a + b

- subtraction a - b

* multiplication a * b

/ division a / b

\ integer divide (drop remainder) a \ b

Mod remainder from integer division a Mod b

^ exponentiation a ^ b

Operator Performs Example

- numeric negation - a

+ string concatenation a + b

& string concatenation a & b
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 271 MB_UG.pdf

User Guide Appendix B: Summary of Operators
Comparison Operators

The comparison operators compare two items of the same general type to produce a logical value of
TRUE or FALSE. Although you cannot directly compare numeric data with non-numeric data (for
example, String expressions), a comparison expression can compare Integer, SmallInt, and Float data
types. Comparison operators are often used in conditional expressions, such as If...Then.

Logical Operators

The logical operators operate on logical values to produce a logical result of TRUE or FALSE:

Operator Returns TRUE if: Example

= a is equal to b a = b

<> a is not equal to b a <> b

< a is less than b a < b

> a is greater than b a > b

<= a is less than or equal to b a <= b

>= a is greater than or equal to b a >= b

Operator Returns TRUE if: Example

And both operands are TRUE a And b

Or either operand is TRUE a Or b

Not the operand is FALSE Not a
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 272 MB_UG.pdf

User Guide Appendix B: Summary of Operators
Geographic Operators

The geographic operators act on objects to produce a logical result of TRUE or FALSE:

Operator Returns TRUE if: Example

Contains first object contains the centroid of the sec-
ond

objectA Contains objectB

Contains Part first object contains part of the second object objectA Contains Part objectB

Contains
Entire

first object contains all of the second object objectA Contains Entire
objectB

Within first object’s centroid is within the second
object

objectA Within objectB

Partly Within part of the first object is within the second
object

objectA Partly Within objectB

Entirely Within the first object is entirely inside the second objectA Entirely Within
objectB

Intersects the two objects intersect at some point objectA Intersects objectB
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 273 MB_UG.pdf

User Guide Appendix B: Summary of Operators
Precedence
A special type of operators are parentheses, which enclose expressions within expressions. Proper
use of parentheses can alter the order of processing in an expression, altering the default precedence.
The table below identifies the precedence of MapBasic operators. Operators which appear on a single
row have equal precedence. Operators of higher priority are processed first. Operators of the same
precedence are evaluated left to right in the expression (with the exception of exponentiation, which is
evaluated right to left).

For example, the expression 3 + 4 * 2 produces a result of 11 (multiplication is performed before
addition). The altered expression (3 + 4) * 2 produces 14 (parentheses cause the addition to be
performed first). When in doubt, use parentheses.

Priority MapBasic Operator

(Highest Priority) parenthesis

exponentiation

negation

multiplication, division, Mod, integer division

addition, subtraction

geographic operators

comparison operators, Like operator

Not

And

(Lowest Priority) Or
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 274 MB_UG.pdf

User Guide Appendix B: Summary of Operators
Automatic Type Conversions

When you create an expression involving data of different types, MapInfo performs automatic type
conversion in order to produce meaningful results. For example, if your program subtracts a Date
value from another Date value, MapBasic will calculate the result as an Integer value (representing the
number of days between the two dates). The table below summarizes the rules that dictate MapBasic’s
automatic type conversions. Within this chart, the token Integer represents an integer value, which can
be an Integer variable, a SmallInt variable, or an Integer constant. The token Number represents a
numeric expression which is not necessarily an integer.

Operator Combination of Operands Result

 + Date + Number
Number + Date
Integer + Integer
Number + Number
Other + Other

Date
Date
Integer
Float
String

- Date - Number
Date - Date
Integer - Integer
Number - Number

Date
Integer
Integer
Float

* Integer * Integer
Number * Number

Integer
Float

/ Number / Number Float

\ Number \ Number Integer

MOD Number MOD Number Integer

^ Number ^ Number Float
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 275 MB_UG.pdf

C
List of MapBasic Changes
by Version
This section summarizes the enhancements made in recent versions of
MapBasic. For details on each enhancement, see the appropriate
discussion in the MapBasic Reference or online Help. Details of the
current version can be found in the "What’s New" section in the front of
this user guide.

Sections in this Appendix:

Features Introduced or Changed in MapBasic 7.8 277
Features Introduced in MapBasic 7.5 278
Features Introduced in MapBasic 7.0 278

User Guide Appendix C: List of MapBasic Changes by Version
Features Introduced or Changed in MapBasic 7.8

For more information about these statements and functions, see the MapBasic Reference Guide.

New Statements and Functions

MGRSToPoint Statement - Converts a string representing an MGRS coordinate to an object value
representing a point.

Save MWS Statement - Saves the current workspace to an XML-based MWS file.

PointToMGRS Statement - Converts an object value representing a point to a string representing an
MGRS coordinate.

Objects Pline Statement - Splits a single section polyline into two polylines.

WFS Refresh Statement - The WFS Refresh Table statement refreshes a WFS table from the server.

Enhanced Statements and Functions

Create Cartographic Legend Statement - The Create Cartographic Legend statement has a new
clause that creates the small or large legend sample size for an active map window.

Export Statement - Now includes a CSV export option.

LegendInfo() function - The LegendInfo() function has a new attribute that returns the legend size
information.

Objects Snap Statement - Cleans the objects from the given table, and optionally performs various
topology-related operations on the objects, including snapping nodes from different objects that are
close to each other into the same location and generalization/thinning. The settings specified in the
Objects Snap statement are written to the input table’s metadata when the Objects Snap statement is
executed. These settings become the default values for the table when the Set Values for Node Snap
and Thinning dialog box is opened.

PrintWin Statement - The MapBasic PrintWin statement has been enhanced so that a MapInfo window
can be printed to a file.

Register Table Statement - When opening an Excel spreadsheet, the user can now specify how each
column is imported. For example, the user might want a 'Date' column in Excel to be a Text column in
MapInfo Professional. The MapBasic Register Table statement has been enhanced to support this new
feature. Additionally, we have added a WFS Type to this statement so you can register WFS files you
retrieve from the Internet.

Set Cartographic Legend Statement - The Set Cartographic Legend statement now allows you to
control the sample legend sizes that appear in Cartographic Legend windows.

Shade Statement - The MapBasic Shade statement now allows for circle/square dot density thematics
with user-defined size.

TableInfo() variable - The MapBasic TableInfo() variable includes a new value for the TAB_INFO_TYPE
attribute to support Web Feature Service (WFS). The purpose of this the TableInfo() functino is to
return information about an open table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 277 MB_UG.pdf

User Guide Appendix C: List of MapBasic Changes by Version
Features Introduced in MapBasic 7.5

New Statements and Functions

Modifying Map Objects:

Objects Move Statement

Objects Offset Statement

Creating Map Objects – Advanced Functions:

Offset() Function

OffsetXY() Function

CartesianOffset() Function

CartesianOffsetXY() Function

SphericalOffset() Function

SphericalOffsetXY() Function

Enhanced Statements and Functions

WMS Support:

LayerInfo() function

Register Table Statement

TableInfo() function

Mapping a Remote Database:

Server Create Map Statement

Features Introduced in MapBasic 7.0

New Statements and Functions

Control DocumentWindow statement:

Create Cutter statement

CurrentBorderPen() function

CurrentLinePen() function

Rotate() function

RotateAtPoint() function

ServerCreateTable statement

SessionInfo() function

Set Style statement

TextSize() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 278 MB_UG.pdf

User Guide Appendix C: List of MapBasic Changes by Version
Enhanced Statements and Functions

Shapefile Support:

Register Table statement

Clone table structure:

Create Map statement

Create Voronoi Polygons:

Create Object statement

Create New Tables on DBMS Servers and Combine Objects using Column enhancements:

Commit Table statement

Create Table statement

Server Create Map statement

DBMS Driver:

Server Connect() function

Current Pen enhancement:

CurrentPen() function

File Location enhancement:

GetFolderPath$() function

Import GML Files:

Import statement

Labeling Partial Objects:

LayerInfo() function

Raster Transparency enhancements:

Set Window statement

ReadControlValue() Additional Types:

ReadControlValue() function

User Defined Resolution and JPEG 2000 Support:

Save Window statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 279 MB_UG.pdf

D
Supported ODBC Table
Types
These are the ODBC data types that MapInfo supports:

• SQL_BIT
• SQL_TINYINT
• SQL_SMALLINT
• SQL_INTEGER:
• SQL_REAL
• SQL_BIGINT
• SQL_DECIMAL
• SQL_DOUBLE
• SQL_FLOAT
• SQL_NUMERIC
• SQL_BINARY
• SQL_LONGVARBINARY
• SQL_VARBINARY
• SQL_LONGVARCHAR
• SQL_DATE
• SQL_TYPE_DATE
• SQL_TIMESTAMP
• SQL_TYPE_TIMESTAMP
• SQL_TIME
• SQL_TYPE_TIME
• SQL_CHAR
• SQL_VARCHAR

E
Making a Remote Table
Mappable
Sections in this Appendix:

Prerequisites for Storing/Retrieving Spatial Data 282
Creating a MapInfo Map Catalog . 282

User Guide Appendix E: Making a Remote Table Mappable
Prerequisites for Storing/Retrieving Spatial Data

There are four prerequisites for storing and retrieving points on an RDBMS table.

1. The coordinate values for the spatial data must be stored in columns of the table as numbers
or a supported spatial data type.
Possible methods for accomplishing this include:

• Existing data.
• Use Easyloader to upload to the database. This application will work for all supported

databases.
This is a data creation task and can be done at any time.

2. To increase performance on queries against the coordinates, a spatial index column can be
included. This is done as part of the sample upload applications, if it is desired. This is a data
creation task and can be done at any time.

3. MapInfo stores information about which columns are the coordinates in a special table on the
RDBMS system known as the MapInfo Map Catalog. There must be one catalog per database.
To create the Map Catalog use Easyloader or MIODBCAT.MBX. You can also follow the
procedure for manually creating a map catalog, described in the next section. This is a once
only task and is required before ANY tables on that database can be mapped in MapInfo.

4. MapInfo gets catalog information about mappable tables using the MapBasic statement
Server Create Map. This is a once per table task and is required before this specific table can
be mapped in MapInfo.

Creating a MapInfo Map Catalog

You cannot make an ODBC table mappable unless a MapInfo Map Catalog has been created for the
database where the table resides. The MapInfo Map Catalog should be created by your database
administrator.

1. Create the user MAPINFO with the PASSWORD ***** in the specific database where the
mappable tables are located.

2. Create the table MAPINFO_MAPCATALOG in the database.
3. The Create table statement needs to be equivalent to this MapInfo create statement for the

specific remote database.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 282 MB_UG.pdf

User Guide Appendix E: Making a Remote Table Mappable
Create Table MAPINFO_MAPCATALOG SPATIALTYPE Float,
 TABLENAME Char(32),
 OWNERNAME Char(32),
 SPATIALCOLUMN Char(32),
 DB_X_LL Float,
 DB_Y_LL Float,
 DB_X_UR Float,
 DB_Y_UR Float,
 COORDINATESYSTEM Char(254),
 SYMBOL Char(254),
 XCOLUMNNAME Char(32),
 YCOLUMNNAME Char(32),

RENDITIONTYPE integer
RENDITIONCOLUMN Char(32)
RENDITIONTABLE Char(32)

It is important that the structure of the table is exactly like this statement. The only substitution
that can be made is for the databases that support varchar or text data types. These data
types can be substituted for the Char datatype.

4. Create a unique index on the TABLENAME and the OWNERNAME, so only one table for each
owner can be made mappable.

5. Grant Select, Update, and Insert privileges on the
 MAPINFO_MAPCATALOG. This allows the tables to be made mappable by users. The delete
privilege should be reserved for database administrators.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 283 MB_UG.pdf

F
Data Setting and
Management
Sections in this Appendix:

Upgrading Applications from Versions Prior to 6.5 285
Application Data Files and Directories 287
Default Preferences Paths . 289
Registry Changes . 289
Installer Requirements and Group Policies 290

User Guide Appendix F: Data Setting and Management
Upgrading Applications from Versions Prior to 6.5

MapInfo Professional Data and Settings Management- Application Data Files

Application data (appdata) files are the non-executable, non-user data files that MapInfo Professional
uses during execution The following files/directories and are considered appdata for version 6.5:

Traditionally these files have been kept in the Windows directory or the Program directory. The strategy
for 6.5 is to install application data files in a per user location, and search for them in other areas as
well to allows support for sharing application data files between MapInfo versions/products. By
relocating mapinfow.prj a user can share one custom projection files between different versions of MI
Pro

The following files remain in the Program directory:

Keep in Mind:
• The installer never asks the user where they want to place application data files.
• The installer always runs the same way, whether the user has MI Pro 6.0 installed or not.
• There is not an "upgrade" install for 6.5 (i.e., you cannot install 6.5 into the same directory as

6.0, the installer will error).
• Application developers can move or copy files where they want, but MI Pro 6.5 will search for

them only in these locations and in this order:
appdata_dir, local_appdata_dir, pref_dir, program_dir

Filename Description

mapinfow.prf Preference file

mapinfow.wor Default workspace

startup.wor Startup workspace

mapinfow.clr Color file

mapinfow.pen Pen file

mapinfow.fnt Symbol file

custsymb Custom symbol directory

thmtmplt Theme template directory

graphsupport Graph support directory

Filename Description

mapinfow.abb Abbreviation file

mapinfow.prj Projection file

mapinfow.mnu Menu file
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 285 MB_UG.pdf

User Guide Appendix F: Data Setting and Management
A Glossary for Upgrading Applications
 You will find the following definitions useful:

<user profile root>

The root the user directory structure. Each user has write access to the subdirectories of this
area. The location varies depending on the Windows version:

Windows 2000 : c:\Documents and Settings\<username>

Windows 98: <Windows dir>

Windows NT 4.0: <Windows dir>\profiles\<username>
<My Documents>

Windows 2000: c:\Documents and Settings\<username>\My Documents

Windows 98: c:\MyDocuments

Windows NT 4.0: <Windows dir>\profiles\<username>\personal

Pref_dir
MI Pro writes out mapinfow.prf and mapinfow.wor by default.

6.0: Windows directory

6.5: <user profile root>\Application Data\MapInfo\MapInfo. If this directory does not exist at startup,
then MI Pro creates it.

home_dir
Obsolete (pertained to prior version support of MacIntosh and UNIX

6.0: Windows directory

6.5: Windows directory

program_dir
In 6.0 MI Pro expects to find many of the appdata files in this location.

6.0: location of mapinfow.exe

6.5: location of mapinfow.exe

appdata_dir
This is a per user directory introduced in 6.5. Many of the appdata files will be install in this location.

6.0: n/a

6.5: <user profile root>\Application Data\MapInfo\MapInfo\Professional\650.

If this directory does not exist at start up, MI Pro does not create it. Programmer's must not assume
this represents a valid path.

local_appdata_dir
This is also a per user directory, similar to appdata_dir, except files here do not roam.

6.0: n/a
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 286 MB_UG.pdf

User Guide Appendix F: Data Setting and Management
6.5: <user profile root>Local Settings\Application Data\MapInfo\MapInfo\Professional\650.

Note: If this directory does not exist at start up MI Pro does not create it. Programmer's must not
assume this represents a valid path.

common_appdata_dir
This directory is shared by all users on a machine. By default users have read access to everything,
permission to create files and write access to files they create. File in this directory do not roam.
Support for this directory was added in version 7.0.

6.0: n/a

6.5: n/a

7.0 : <profile root>\All Users\Application Data\MapInfo\MapInfo\Professional\700

mydocs_dir
Refers to the My Documents directory of the current user.

6.0: n/a

6.5: <My Documents>

search_for_file
This function locates appdata files. It searches directories for them in the following pre-defined order:

6.0: pref_dir, home_dir, program_dir

6.5: appdata_dir, local_appdata_dir, pref_dir, program_dir

7.0: appdata_dir, local_appdata_dir, pref_dir, common_appdata_dir, program_dir

Application Data Files and Directories

The following list describes how both MI Pro 6.0 and 6.5 searches for the appdata files and directories.

mapinfow.prf
6.0: Uses search_for_file. Regardless of where the files was read from, always writes out to pref_dir.

6.5: Uses search_for_file. If found, then reads the file and remembers the location.

On exit, if file was found at start up and if the user has write access to it, then write it out to that
location. Otherwise, write the file to pref_dir.

mapinfow.wor
6.0: Looks in pref_dir, then home_dir. Loads the first one it finds.

6.5: Uses search_for_file. If found, reads the file and remembers the location.

On exit, if file was found at start up, and if the user has write access to it, then write it out to that
location. Otherwise, write the file to pref_dir.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 287 MB_UG.pdf

User Guide Appendix F: Data Setting and Management
startup.wor
6.0: Loaded in order from the following directories: program_dir, pref_dir.

6.5: Loaded in order from the following directories: pref_dir, appdata_dir, local_appdata_dir, pref_dir,
program_dir. Unlike other appdata files, each startup.wor that is found is processed.

mapinfow.clr
6.0: Uses search_for_file. If not found, then displays dialog for user to find.

If user chooses to save custom defined colors, a new color file is written to pref_dir (or overwrites an
existing one).

6.5: Uses search_for_file. If not found, then displays dialog for user to find.

If user chooses to save custom defined colors and the color file was located in a per-user directory,
then MI Pro updates the existing file. If the color file was read from the program directory, or if the user
does not have write access to the file, then MI Pro writes the file to the pref_dir.

mapinfow.pen
6.0: Uses search_for_file. If not found, then displays dialog for user to find.

6.5: Uses search_for_file. If not found, then displays dialog for user to find.

mapinfow.fnt
6.0: Uses search_for_file. If not found, then displays dialog for user to find.

6.5: Uses search_for_file. If not found, then displays dialog for user to find.

custsymb directory
6.0: Assumes it is under the program_dir.

6.5: Looks for symbol dir by using search_for_file. If not found, then assumes it is under the
program_dir.

thmtmplt directory
6.0: If the template dir is specified in the preference file exists, then use it. Otherwise, try to create a
template dir under the program_dir. If it cannot be created under program_dir, no template dir is set.

In all cases, including the last, MI Pro updates the preference file path.

6.5: If the template dir specified in the preference file exists, then use it. Otherwise, look for the
template dir using search_for_file. If found, then use it. Otherwise, try creating template dir off
appdata_dir, then program_dir. Otherwise, no template dir is set. In any case, MI Pro does not set the
preference file path.

graphsupport directory
6.0: Use the directory specified in the preference file regardless of whether it exists. If the specified
directory is invalid, then the user gets an error message when trying to create a new graph.

6.5: If the template dir specified in the preference file exists, then use it. Otherwise, look for the graph
support dir using search_for_file. If found, then use it. If not, then assume it is off the program_dir, and
the user will get error message when trying to create a graph).

Note: In version 7.0 the search_for_file routine includes common_appdata_dir.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 288 MB_UG.pdf

User Guide Appendix F: Data Setting and Management
Default Preferences Paths

The following table lists preference paths and their 6.0/6.5 /7.0 defaults:

Registry Changes

MapInfo Professional's use of the registry must be organized to allow each user to work with their own
data. The following changes were made to support this organization:

• The Tool Manager entries are now installed under HKEY_CURRENT_USER.
• The graph engine now stores custom colors and number formats under

HKEY_CURRENT_USER.

Path 6.5 default 7.0 default

Tables mydocs_dir mydocs_dir

Workspaces mydocs_dir mydocs_dir

MapBasic
Programs

<program_dir>\Tools <program_dir>\Tools

Import Files mydocs_dir mydocs_dir

SQL Queries mydocs_dir mydocs_dir

Theme
Templates

appdata_dir\thmtmplt if exists,
program_dir\thmtmplt other-
wise

uses search_for_file
then program_dir if that fails

Saved Queries mydocs_dir mydocs_dir

New Grids mydocs_dir mydocs_dir

Crystal Report files mydocs_dir mydocs_dir

Graph Support files local_appdata_dir if exists,
program_dir otherwise

uses search_for_file
then program_dir if that fails

Search Directories for
Tables

mydocs_dir mydocs_dir
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 289 MB_UG.pdf

User Guide Appendix F: Data Setting and Management
Installer Requirements and Group Policies

MapBasic 6.5
The 6.5 application data files should be installed to directories as specified in the following table:

MapBasic 7.0
The 7.0 application data files should be installed to directories as specified in the following table:

The following MapBasic functions have been added to help with file locations:

GetFolderPath$() function - Returns the path of a special MI Pro or Windows folder.

LocateFile$() function - Return the path to one of MI Pro's application data files.

Filename 6.5 Workstation

mapinfow.clr Application Data\MapInfo\MapInfo\Professional\650

mapinfow.pen Application Data\MapInfo\MapInfo\Professional\650

mapinfow.fnt Application Data\MapInfo\MapInfo\Professional\650

mapinfow.abb Program directory

mapinfow.prj Program directory

mapinfow.mnu Program directory

custsymb Application Data\MapInfo\MapInfo\Professional\650

thmtmplt Application Data\MapInfo\MapInfo\Professional\650

graphsupport Local Settings\Application Data\MapInfo\MapInfo\Professional\650

Filename 7.0 Workstation

mapinfow.clr Application Data\MapInfo\MapInfo\Professional\700

mapinfow.pen Application Data\MapInfo\MapInfo\Professional\700

mapinfow.fnt Application Data\MapInfo\MapInfo\Professional\700

mapinfow.abb Program directory

mapinfow.prj Program directory

mapinfow.mnu Program directory

custsymb Application Data\MapInfo\MapInfo\Professional\700

thmtmplt Application Data\MapInfo\MapInfo\Professional\700

graphsupport All Users Application Data\MapInfo\MapInfo\Profes-
sional\700
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 290 MB_UG.pdf

GL
MapBasic Glossary
If you do not find the term you are looking for in this glossary, check the
glossary in the MapInfo Professional User Guide (Unabridged) on the
Installation CD.

User Guide Appendix GL: MapBasic Glossary
Term Definition

Aggregate
functions

Functions such as Sum() and Count(), which calculate summary informa-
tion about groups of rows in a table. See Select in the MapBasic Reference
or online Help.

Alias

A name by which a MapInfo user (or a MapBasic program) refers to an open
table. For example, if a table name is “C:\MapInfo\Parcels.Tab,” the table’s
alias would be Parcels. Table aliases may not contain spaces; any spaces in
a table name become underscore characters in a table alias. Alias is also a
MapBasic data type; an alias variable can store a string expression that rep-
resents a column name (for example, “World.Population”). The maximum
length of an alias is 32 characters.

Animation Layer

A special “floating” layer added to a map that allows for redraw of objects in
that layer only. Modifying an object in the animation layer does not cause
other layers to redraw.

Apple Events

Macintosh interapplication protocol that allows applications to exchange
instructions and data. Both applications must support Apple Events for a
successful exchange.

Argument

Also known as a parameter. Part of a statement or a function call. If a state-
ment or function requires one or more arguments, you must specify an
appropriate
expression for each required argument. The argument that you specify is
passed to the statement or function. In syntax diagrams in the MapBasic
Reference and online Help, arguments are formatted in italics.

Array
A grouping of variables of the same type used to keep similar elements
together.

Automation,
OLE Automation

OLE Automation is technology through which one Windows application can
control another Windows application. For example, a Visual Basic applica-
tion can control MapInfo through MapInfo’s Automation methods and prop-
erties. See Chapter 12: Integrated Mapping.

Bar Chart
A graph representing values from the user’s table. Bar charts can be used in
the graph window or can be displayed thematically on the map.

Breakpoint

A debugging aid. To make your program halt at a specific line, place a
breakpoint before that line. To place a breakpoint in a MapBasic program,
insert a Stop
statement and recompile.

Brush Style
An object’s fill pattern. The style is comprised of pattern, foreground color,
and background color.

ButtonPad Another word for “toolbar.”

By Reference,
By Value

Two different ways of passing parameters to a function or procedure. When
you pass an argument by reference (the default), you must specify a vari-
able name when you make the function call; the called function can modify
the variable that you specify. When you pass an argument by value (using
the ByVal keyword), you do not need to specify a variable name.

Client
An application that uses or receives information from another program.
Often referred to in database connections or DDE connections.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 292 MB_UG.pdf

User Guide Appendix GL: MapBasic Glossary
Column

Part of a table or database. A table contains one or more columns, each of
which represents an information category (for example, name, address,
phone number, etc.).
Columns are sometimes referred to as “fields.” Tables based on raster
images do not have columns.

Comment

A programmer’s note included in the program. The note has no use in the
syntax necessary for compiling the program. In the MapBasic language, an
apostrophe (single quotation mark) marks the beginning of a comment.
When an apostrophe appears in a statement, MapBasic ignores the remain-
der of the line (unless the
apostrophe appears inside of a literal string expression).

Compiler
A program that takes the text of a program, checks for syntax errors, and
converts the code to an executable format.

Control A component of a dialog box, such as a button or a check box.

Coordinate
System

A set of parameters that specifies how to interpret the locational coordi-
nates of objects. Coordinate systems may be earth (for example, coordi-
nates in degrees longitude/latitude) or non-earth (for example, coordinates
in feet) based; earth maps are referenced to locations on the earth.

Cosmetic Layer

A temporary layer that exists on every map window. This layer always occu-
pies the topmost position on the layer control. MapInfo’s Find command
places symbols in the Cosmetic layer to mark where a location was found.

Cursor, Mouse
Cursor, Row

Cursor

The mouse cursor is a small image that moves as the user moves the
mouse. The row cursor is a value that represents which row in the table is
the current row; use the Fetch statement to position the row cursor.

DDE See Dynamic Data Exchange.

Degrees

A unit of measure for map coordinate systems. Some paper maps depict
coordinates in terms of degrees, minutes, seconds (for example, 42
degrees, 30 minutes); MapBasic statements, however, work in decimal
degrees (for example, 42.5 degrees). See also:
Latitude, Longitude.

Derived Column
A column in a query table, produced by applying an expression to values
already existing in the base table. See the Add Column statement.

Disabled

A condition where part of the user interface (a menu command, dialog con-
trol, or toolbar button) is not available to the user. The disabled item is gen-
erally shown as “grayed out” to indicate that it is not available. See also:
Enabled.

Dynamic Data
Exchange (DDE)

Microsoft Windows-specific protocol that allows different applications to
exchange instructions and data. Both applications must be DDE compliant
for a successful exchange.

Dynamic Link
Library (DLL)

Microsoft Windows files containing shared executable routines and other
resources. DLLs are generally called from one program to handle a task
which often returns a value back to the original program. DLLs created for
use in Windows 3.1 have a 16-bit architecture; DLLs written for Windows NT
or Windows 95 have a 32-bit architecture.

Term Definition
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 293 MB_UG.pdf

User Guide Appendix GL: MapBasic Glossary
Enabled
The opposite of Disabled; a condition where a menu command, dialog box
control, or toolbar button is available for use.

Expression
A grouping of one or more variables, constant values, function calls, table
references, and operators.

File input/
output, File i/o

The process of reading information from a file or writing information to a file.
Note that the MapBasic language has one set of statements for performing
file i/o, and another set of statements for performing table manipulation.

Focus

In a dialog box, the active control (the control which the user is currently
manipulating) is said to have the focus; pressing TAB moves the focus from
one control to the next. Focus also refers to the active application that is
running. Switching to a different application (for example, by pressing Alt-
Tab on Windows) causes the other application to receive the focus.

Folder An area for file storage; also called a directory.

Geographic Join

A relational link between two mappable tables based on geographic criteria
(for example, by determining which point objects from one table are inside of
regions in the other table).

Global
Positioning

System (GPS)

A hardware/software system that receives satellite signals and uses the sig-
nals to determine the receiver’s location on the globe.

Global Variable
A variable defined at the beginning of a program that can be used in any
procedure or function. Created using the Global statement.

Handler

A procedure in a program. When a specific event occurs (such as the user
choosing a menu command), the handler performs whatever actions are
needed to respond to the event.

Hexadecimal

A base-16 number system, often used in computer programming. Each
character in a hexadecimal number can be 0-9 or A-F. In MapBasic, you
must begin each
hexadecimal number with the &H prefix (for example, &H1A is a hexadeci-
mal number that equals decimal 26).

Integrated
Mapping

Technology that allows MapInfo features, such as Map windows, to be inte-
grated into other applications (such as Visual Basic programs). See
Chapter 12: Integrated Mapping.

Keyword

A word recognized as part of the programming language; for example, a
statement or function name. In the MapBasic documentation, keywords
appear in bold.

Latitude

A type of coordinate, measured in degrees, indicating north-south position
relative to the Equator. Locations south of the Equator have negative lati-
tude.

Linked Table

A type of MapInfo table that is downloaded from a remote database. The
data is taken from the remote database and transferred locally. The next
time the table is linked back to the remote database, MapInfo checks time
stamps to see if there are any differences between the two tables. Where
differences occur, the table is updated with the new information.

Term Definition
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 294 MB_UG.pdf

User Guide Appendix GL: MapBasic Glossary
Linker
A program that combines separate modules from a project file into a single
MBX application file.

Literal Value

An expression that defines a specific, explicit value. For example, 23.45 is a
literal number, and “Hello, World” is a literal string. Also referred to as a
hard-coded value.

Local Variable

A variable that is defined and used within a specific function or procedure.
Local variables take precedence over global variables of the same name.
Created using the Dim statement.

Longitude

A type of coordinate, measured in degrees, indicating east-west position rel-
ative to the Prime Meridian. Locations west of the Prime Meridian have neg-
ative longitude.

Loop

A control structure in a program that executes a group of statements repeat-
edly. Incorrect coding of a loop can create an infinite loop (a situation where
the loop never ends).

MapBasic
Window

A window in the MapInfo user interface. From MapInfo’s Options menu,
choose Show MapBasic Window. You can type MapBasic statements into
the MapBasic window, without compiling a program.

MBX

A MapBasic executable file, which the user can run by choosing MapInfo’s
Tools >Run MapBasic Program command. Any MapInfo Professional user
can run an MBX file. To create an MBX file, you must use the MapBasic
development
environment.

Metadata

Information about a table (such as date of creation, copyright notice, etc.)
stored in the .TAB file instead of being stored in rows and columns. See
Chapter 8: Working With Tables.

Methods, OLE
Methods

Part of OLE Automation. Calling an application’s methods is like calling a
procedure that affects the application. See Chapter 12: Integrated Map-
ping.

Module A program file (.MB file) that is part of a project.

Module-level
Variable

A variable that can be accessed from any function or procedure in an MB
program file, although it cannot be accessed from other MB program files in
the same project. Created by placing a Dim statement outside of any func-
tion or procedure.

Native

A standard file format. Choosing MapInfo’s File > New command creates a
native MapInfo table, but a table based on a spreadsheet or text file is not in
MapInfo’s native file format.

Object

A graphical object is an entity that can appear in a Map or Layout window
(for example, lines, points, circles, etc.). A MapBasic object variable is a
variable that can contain a graphical object. The Object column name refers
to the set of objects stored in a table. An OLE object is a Windows-specific
entity (produced, for
example, through drag and drop).

Term Definition
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 295 MB_UG.pdf

User Guide Appendix GL: MapBasic Glossary
Object Linking
and Embedding

(OLE)

Technology that allows objects created in one application to be used in
another application. An object can be any information such as a map, chart,
spreadsheet, sound effect, text, etc. Embedding is the process of inserting
an object from a server into a container application.

Operator

A special character or word that acts upon one or more constants, variables,
or other values. For example, the minus operator (-) subtracts one number
from another.

Parameter Another word for “argument.”

Pen Style
The line style set for an object. The style is comprised of width, pattern, and
color.

Pie Chart

A circle divided into sectors representing values as percentages in compari-
son to one another. MapInfo can display pie charts in the Graph window or
in thematic maps.

Platform
An operating environment for computer software (for example, Windows,
Linux).

Procedure, Sub
Procedure

A group of statements enclosed within a Sub ... End Sub construction.
Sometimes referred to as a routine or a subroutine.

Progress Bar
A standard dialog box that displays a horizontal bar, showing the percent
complete.

Project, Project
File

A project is a collection of modules. A project file (.MBP file) is a text file that
defines the list of modules. Compiling all modules in the project and then
linking the project produces an application (MBX) file.

Property, OLE
Property

Part of OLE Automation. A property is a named attribute of an OLE object.
To determine the object’s status, read the property. If a property is not read-
only, you can change the object’s status by assigning a new value to the
property. See Chapter 12: Integrated Mapping.

Raster A graphic image format that consists of rows of tiny dots (pixels).

Raster Underlay
Table

A table that consists of a raster image. This table does not contain rows or
columns; therefore, some MapBasic statements that act on tables cannot be
used with raster underlay tables.

Record

An entry in a table or database. Each record appears as one row in a
Browser
window.

Recursion

A condition where a function or procedure calls itself. While recursion may
be desirable in some instances, programmers should be aware that recur-
sion may occur unintentionally, especially with special event handlers such
as SelChangedHandler.

Remote Data Data stored in a remote database, such as an Oracle or SYBASE server.

Routine

A group of statements that performs a specific task; for example, you can
use the OnError statement to designate a group of statements that will act
as the
error-handling routine.

Term Definition
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 296 MB_UG.pdf

User Guide Appendix GL: MapBasic Glossary
Row Another word for “record.”

Run Time
The time at which a program is executing. A runtime error is an error that
occurs when an application (MBX file) is running.

Runtime

A special version of MapInfo that contains all of the geographic and data-
base
capabilities of a full version but does not include the specific menu and tool-
bar options in a standard package. Used to create customized versions of
MapInfo.

Scope of
Variables

Refers to whether a variable can be accessed from anywhere within a pro-
gram
(global variables) or only from within a specific function or procedure (local
variables). If a procedure has a local variable with the same name as a glo-
bal
variable, the local variable takes precedence; any references to the variable
name within the procedure will use the local variable.

Seamless
Tables

A type of table that groups other other tables together, making it easier to
open and map several tables at one time. See Chapter 8: Working With
Tables.

Server

An application that performs operations for or sends data to another applica-
tion (the client). Often referred to in database connections or DDE connec-
tions.

Shortcut menu A menu that appears if the user clicks the right mouse button.

Source Code The uncompiled text of a program. In MapBasic, the .mb file.

Standard

Standard menu commands and standard toolbar buttons appear as part of
the default MapInfo user interface (for example, File > New is a standard
menu command). Standard dialog boxes are dialogs that have a predefined
set of controls (for example, the Note statement produces a standard dialog
box with one static text control and an OK button). If a MapBasic program
creates its own user interface element (dialog box, toolbar button, etc.) that
element is referred to as a custom dialog, a custom button, etc.

Statement
An instruction in a MapBasic program. In a compiled MapBasic program, a
statement can be split across two or more lines.

Status Bar
The bar along the bottom of the MapInfo program window which displays
help messages, the name of the editable layer, etc.

Status Bar Help

A help message that appears on the status bar when the user highlights a
menu
command or places the mouse cursor over a toolbar button.

Subroutine
A group of statements; in MapBasic syntax, subroutines are known as pro-
cedures or sub procedures.

Toolbar

A set of buttons. The user can “dock” a toolbar by dragging it to the top edge
of the MapInfo work area. The MapBasic documentation often refers to Tool-
bars as
“ButtonPads” because ButtonPad is the MapBasic-language keyword that
you use to modify toolbars.

Term Definition
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 297 MB_UG.pdf

User Guide Appendix GL: MapBasic Glossary
ToolTip
A brief description of a toolbar button; appears next to the mouse cursor
when the user holds the mouse cursor over a button.

Transparent Fill

A fill pattern, such as a striped or cross-hatch pattern, that is not completely
opaque, allowing the user to see whatever is “behind” the filled area. See
Brush clause.

Variable A small area of memory allocated to store a value.

Term Definition
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 298 MB_UG.pdf

Index

– (minus)
date subtraction 84
subtraction 83

Symbols
(backslash)

integer division 271
(backward slash)

integer division 83
& (ampersand)

finding an intersection 156
hexadecimal numbers 80
shortcut keys in dialogs 130
shortcut keys in menus 118
string concatenation 83, 271

* (asterisk)
fixedlength strings 74
multiplication 83, 271

+ (plus) 271
addition 83
date addition 84
string concatenation 83

, (comma) character
thousand separator 80

. (period) character
decimal separator 80

/ (forward slash)
date string format 81
division 83

/ (slash)
division 271

= (equal sign) 84
> (greater than) 84
>= (greater than or equal) 84
^ (caret) 83

exponentiation 271
ð (less than or equal) 84
≠ (not equal) 84
’ (apostrophe) 72
‹ (less than) 84

A
Accelerator keys

in dialogs 130
in integrated mapping 237
in menus 118

Accessing remote databases 173
Add Column statement 209

Add Map Layer statement 132
Adding columns to a table 157
Adding nodes to an object 194
Addresses, finding 156
Advise loops

MapInfo as DDE server 223
Aggregate functions

defined 292
See MapBasic Reference

Alias variables 153
Alias, defined 292
Alter Button statement 139
Alter ButtonPad statement 139, 217
Alter Control statement 128
Alter Menu Bar statement 113
Alter Menu Item statement 114
Alter Menu statement 112
Alter Object statement 194, 197
Alter Table statement 157
And operator 85
Animation layers 133
Any() operator 208
Area units 204
Area() function 188, 207
Arguments

passing by reference 93
passing by value 93

Arithmetic operators 83
Array variables

declaring 75
resizing 75

Ask() function 121
Assigning values to variables 74
auto_lib.mb (sample program) 147
AutoLabel statement 194
Automation

defined 292
object model 244

B
Bar charts

in graph windows 135
in thematic maps 132

Beeping
because window is full 59

Between operator 84
BIL (SPOT image) files 167
Binary file i/o 179, 182
Bitmap image files 167

User Guide Chapter GL: Index
Branching 89
Breakpoints (debugging) 105
Browser windows 134
Brush styles 188
BrushPicker controls 126
Buffers, creating 196, 266
Button controls (in dialogs) 127
ButtonPads

adding new buttons 140
creating new pads 140
custom Windows icons 217
defined 292
docking 145
help messages for buttons 144
ICONDEMO.MBX 142
PushButtons 138
ToggleButtons 138
ToolButtons 138

Byreference parameters 93
Byvalue parameters 93

C
C language

sample programs 261
Callbacks 237
Calling external routines 65, 212
Calling procedures 92
CancelButton controls 127
Case sensitivity 72
Character sets 182
Checkable menu items 114
CheckBox controls 126
Choropleth maps 132
Circles See Objects 13
Class name

MapInfo.Application 229
MapInfo.Runtime 230

Clicking and dragging 141
Client/server

database access 173
DDE protocol 218

Close Window statement 131, 224
Color values

RGB() function 191
selecting objects by color 191

Columns
alias expressions 153
Obj (object) column 155, 185
RowID column 155
syntax for reading 152

Command line arguments 62, 253
CommandInfo() function

ButtonPads 139
DDE 222
detecting doubleclick in list 128
detecting if user clicked OK in dialog 123
determining Find results 156
ID of selected menu item 117

Comments 72
Commit statement 136, 157
Commit Table statement 133
Comparison operators 84
Compiler

defined 293
Compiler directives 100
Compiling a program

from the command line 62
in the active window 51, 60
without opening the file 67

Concatenating strings
& operator 271
+ operator 271

Confirmation prompt 121
Connecting to a remote database 173
Connection handle

defined 173
Connection number

defined 173
Constants

date 81
defined 78
logical 81
numeric 80
string 80

Contains operator 86, 206
Continue statement 104
Continuous Thematic Shading support 132
Control panels, effect on date formatting 81
Controls in dialogs 125
Conventions 16
Coordinate systems

earth coordinates 203
Layout coordinates 162, 203
nonearth coordinates 203

Copying programs from Help 53
Cosmetic layer

defined 293
deleting objects from 162
selecting objects from 162

Create ButtonPad statement 139, 141, 217
Create Frame statement 135, 193
Create Index statement 157
Create Map statement 157, 186
Create Menu Bar statement 116
Create Menu statement 113
Create Text statement 135, 189
CreateCircle() function 194
Creating map objects 193
Crystal Report writer 151
CurDate() function 80, 84
Cursor (drawingtool icon) 145
Cursor (position in table) 152

D
Data structures 76
database live access 176
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 300 MB_UG.pdf

User Guide Chapter GL: Index
Date constants 81
Date operators 84
DBF (dBASE) files 151
DDE, acting as client 218, 223
DDE, acting as server 223
Debugging a program 104
Decimal separators

in numeric constants 80
Decisionmaking

Do Case statement 88
If...Then statement 87

Declare Function statement 99, 211
Declare Sub statement 92, 211
Define statement 100
Degrees, defined 293
Degrees to DMS 264
Deleting

columns from a table 157
files 180
indexes 158
menu items 112, 119
menus 116, 119
part of an object 199

Delphi, sample programs 261
Dialogs, custom

control types 125
disabled controls 128
examples 123–124
lists based on arrays 129
lists based on strings 129
modal vs. modeless 130
positions of controls 124
reacting to user’s actions 128
reading final values 127
setting initial values 127
shortcut keys 130
sizes of controls 124
terminating 130

Dialogs, standard
asking OK/Cancel question 121
hiding progress bars 148
opening a file 122
percent complete 122
saving a file 122
simple message 121

Dim statement 74
Directory names 180
Disabled

defined 293
Distance units 204
DLLs

declaring 211
defined 211
Kernel library 214
passing parameters 212
search path 211
storing ButtonPad icons 217
string parameters 213
User library 212

DMS to Degrees 264
Do Case statement 88
Do...Loop statement 90
Dockable ButtonPads 145
Drawing modes 141
Drop Map statement 186

E
Edit menu 67
Editing target 199
Edits

determining if there are unsaved edits (7.5) 277
EditText controls 125
Embedding 228
Enabled, defined 294
End Program statement 91
EndHandler procedure 96
EOF() function (end of file) 181
EOT() function (end of table) 152
Erasing a file 180
Erasing part of an object 199
Err() function 106
Error$() function 106
Errors

compiletime 60
runtime 104, 156
trapping 106

ERRORS.DOC 236
Events, handling

defined 95
selection changed 143
special procedures 96
userinterface events 109

Excel files 151
Execution speed, improving

handler procedures 98
table manipulation 176
user interface 147

External references
routines in other modules 65
Windows DLLs 211

F
features list

7.0 278
7.5 278
7.8 277

Fetch statement 152, 197
File extensions 15
File input/output

binary file i/o 182
character sets 182
copying a file 180
defined 179
deleting a file 180
random file i/o 182
renaming a file 180
sequential file i/o 180
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 301 MB_UG.pdf

User Guide Chapter GL: Index
File menu 66
FileExists() function 180
FileOpenDlg() function 122
Files, external

BIL (SPOT image) 167
DBF (dBASE) 151
GIF 167
JPG 167
PCX 167
Targa 167
TIFF 167
WKS (Lotus) 151
XLS (Excel) 151

FileSaveAsDlg() function 122
Fill styles (Brush) 188
Findandreplace

in MapBasic editor 68
sample program 267

Finding a street address 156
Fixedlength string variables 75
Flowchart

SQL MapBasic Server statements 174
Focus

defined 294
within a dialog 128

Folder
defined 294

Font styles 188–189
FontPicker controls 126
For...Next statement 90
ForegroundTaskSwitchHandler procedure 96
Foreign character sets 182
Format$() function 134
FoxBase files 151
Frame objects 193
FrontWindow() function 131
Function...End Function statement 99

G
Geocoding

automatically 156
interactively 156
MapMarker 156

Geographic objects
See Objects

Geographic operators 86, 205
Get statement (file i/o) 182
GetMetaData$() function 170
GetSeamlessSheet() function 173
GIF files 167
Global variables 77
GoTo statement 89
GPS

defined 294
GPS applications 133
Graduated symbol maps 132
Graph windows 135
Graticules (grids) 265

Grid Thematic support 132
GroupBox controls 125

H
Halting a program 91
Header files 15
Height of text 189
Help files, creating, for Windows 223
Help files, using 53
Help menu 70
Help messages for buttons 144
Hexadecimal numbers

&H syntax 80
defined 294

Hot keys
in dialogs 130
in menus 118

Hot links 223
HotLinks, querying (7.5) 277

I
Icons for ButtonPads 140, 216
Identifiers, defining 100
If...Then statement 87
Images (raster) 167
Include statement 100
Indexes, creating 157–158
Infinite loops, preventing 98
Info window

customizing 136
making readonly 137

Input # statement 181
Input/output, See File input/output
Insert statement 135, 157, 195
Inserting

columns into a table 158
nodes in an object 194
rows into a table 157

Installation instructions 14
Integer division 271
Integer math 83
Integrated Mapping

defined 294
error trapping 235
introduction 227
MFC 254
object model 244
online Help 242
printing 235
reparenting document windows 231
reparenting legend windows 232
resizing windows 232
sample programs 229, 261
starting MapInfo 229
stopping MapInfo 236
system requirements 228
toolbar buttons 233
using callbacks 237
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 302 MB_UG.pdf

User Guide Chapter GL: Index
International character sets 182
Intersection

area where objects overlap 196
Intersects operator 86
of two streets 156
points where lines intersect 199

IntersectNodes() function 199
Intersects operator 86, 206
Introduction to MapBasic 49

J
Joining tables 208
JPG files 167

K
Kernel (Windows DLL) 214
Keyboard shortcuts 57
Kill statement 180
Kilometers 203

L
LabelFindByID() function 200
LabelFindFirst() function 200
LabelFindNext() function 200
Labelinfo() function 200
Labels

converting to text 201
in programs 89
on maps 194, 199

Latitude
defined 294

LayerInfo() function (7.5) 277
Layers

adding/removing layers 132
Cosmetic layer 162
reading settings (7.5) 277
thematic layers 132

Layout windows
object coordinates 203
opening 135
treating as tables 162

Legend windows, managing 265
Length of an object 206
Like operator 84
Line Input # statement 181
Line numbers in a program 69
Line objects

See Objects
Line styles (Pen) 188
Linked tables 175

defined 294
Linker

defined 295
Linking a project

after selecting a current project 64
from the command line 62
without opening the file 67

ListBox controls 126, 129

Literal value
defined 295

Live remote database access 176
Local variables 74
Logical operators 85
Longitude 295
Looping

Do...Loop statement 90
For...Next statement 90
While...Wend statement 91

Lotus files 151

M
Main procedure 92
MakePen() function 190
Map Catalog 282
Map objects

See Objects
Map projections 133
Map windows 132

labeling 199
reading layer settings (7.5) 277
See Layers

MapBasic 7.8
Create Cartographic Legend statement 277
Export statement 277
LegendInfo() function 277
MGRSToPoint statement 277
Object Snap statement 277
Objects Pline statement 277
PointToMGRS statement 277
PrintWin statement 277
Register Table statement 277
Save MWS statement 277
Set Cartographic Legend statement 277
Shade statement 277
TableInfo() variable 277
WFS Refresh statement 277

MapBasic Window 73
MapInfo documentation set 16
MapInfo menus file 119
MapInfo Runtime

launching through OLE 230
MapInfo Test Drive Center 18
MapInfo-L, archive 19
MAPINFOW.MNU file 119
MapMarker product 156
MBX file, defined 295
Memory limitations 59
Menus, customizing

adding menu items 112
altering a menu item 114
altering the menu bar 116
creating new menus 113
MapInfo menus file (Macintosh) 119
MAPINFOW.MNU file (Windows) 119
removing menu items 112
shortcut keys 118
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 303 MB_UG.pdf

User Guide Chapter GL: Index
Merging objects 196
Message window 136
Metadata 169
Methods

Application object 247
defined 295
MBApplication object 249

Metric units 203
MFC

getting started 254
sample programs 261

Microsoft Excel
DDE conversations 218
worksheet files 151

Mod (integer math) 83
Mod operator 271
Modal dialog boxes 130
Module

defined 295
Modulelevel variables 66
Mouse events

choosing a menu item 111
clicking and dragging 141
doubleclicking on a list 128

Moving an object 198
MultiListBox controls 126, 129
Multiuser editing 163

N
Nodes, determining coordinates 199
Nodes, adding 194, 199, 267
Nodes, maximum number of 194
NoSelect keyword 98
Not operator 85
Note statement 121
Number of

nodes per object 194
objects per row 187
polygons per region 187
sections per polyline 187
selected rows 159

Number of open windows 131
NumberToDate() function 81
Numeric constants 80
Numeric operators 83

O
Object Model 244
Object variables 185
ObjectGeography() function 187
ObjectInfo() function 187, 190–191
ObjectLen() function 188, 206
Objects, creating

based on existing objects 196
buffers 196
creation functions 194
creation statements 193
storing in a table 195

Objects, deleting 186
Objects, modifying

adding nodes 194, 199
combining 196
erasing part of an object 199
position 198
storing in a table 195
style 198
type of object 198

Objects, querying
coordinates 187
styles 188
types 187

ODBC connectivity
data types supported 280

OKButton controls 127
OLE Automation 244

defined 292
OLE Embedding 228
OnError statement 106
OnLine Help, creating for Windows 223
OnLine Help, using 53
Open File statement 179
Open Window statement 131, 224
Opening a table 150
Opening multiple files 65
Operators

comparison 84
date 84
defined 79
geographic 86, 205
logical 85
numeric 83
precedence 86
string 83

Optimizing performance
handler procedures 98
table manipulation 176
user interface 147

Or operator 85
Order of evaluation 86

P
Pack Table statement 155
Page layouts 135
Paper units 204
Parameters

passing by reference 93
passing by value 93

Pattern matching 84
PCX files 167
Pen styles 188
PenPicker controls 126
Percentcomplete dialog 122
Performance tips

handler procedures 98
table manipulation 176
user interface 147
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 304 MB_UG.pdf

User Guide Chapter GL: Index
Perimeter() function 188
Pie charts

in graph windows 135
in thematic maps 132

Point objects
See Objects

Point styles (Symbol) 188
Points of intersection 199
Points, storing in a remote database 175
Polygon overlay 209
Polyline objects

See Objects
PopupMenu controls 126, 129
PowerBuilder

sample programs 261
Precedence of operators 86, 274
Print # statement 181
Print statement 136
Procedures

calling 92
defined 92
Main 92
passing parameters 93
recursion 94
that handle events 95

Product training 54
Program organization 102
Progress bar

defined 296
Progress bars, hiding 148
ProgressBar statement 122
Project files

creating 64
defined 62
examples 63
linking 64

Project menu 69
Projections

changing 133
Properties

Application object 246
defined 296
MBApplication object 248
MBApplications collection 248
MBGlobal object 249
MBGlobals collection 249

Proportional data aggregation 209
PushButtons defined 138
Put statement (file i/o) 182

Q
QueryN tables

closing 160
opening 159

Quick Start dialog 146

R
RadioGroup controls 125
Random file i/o 179, 182
Raster underlay table

defined 296
Raster underlay tables 167
ReadControlValue() function 127, 129
Reading another application’s variables 222
Realtime applications 133
Records

See Rows
Recursion 94

defined 296
ReDim statement 75
Redistricting windows 136
Region objects

See Objects
Relational joins 186, 208
Remarks 72
Remote data

defined 296
Remote database access 173
Remote database live access 176
RemoteMsgHandler procedure

DDE 222
RemoteQueryHandler() function 222
Remove Map Layer statement 132
Rename File statement 180
Report writer 151
Responding to events

See Events, handling
Resume statement 106
Retry/Cancel dialog 163
RGB color values 191
Rightclick menus

destroying 117
modifying 117

RollBack statement 157
Rotating a graphical object 266
Row cursor, positioning 152
RowID 155
Rows in a table

displaying in Info window 136
inserting new rows 157
row numbers (RowID) 155
setting the current row 152
sorting 156
updating existing rows 157

RTrim$() function 85
Run Application statement 146
Run Menu Command statement 118, 136
Running a program

from MapInfo 51, 61
from the development environment 69
from the startup workspace 146

Runtime errors 104
Runtime executable

launching through OLE 230
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 305 MB_UG.pdf

User Guide Chapter GL: Index
S
Sample programs

integrated mapping 261
Save File statement 180
Scope of functions 99
Scope of variables 78
Scroll bars, showing or hiding 133
Seagate Crystal Report writer 151
Seamless tables 171
Search menu 68
Search path for DLLs 211
Searchandreplace

in MapBasic editor 68
sample program 267

SearchInfo() function 143
SelChangedHandler procedure 96, 143
Select Case (Do Case) 88
Select statement 186–187, 192, 205–207
Selection

changing 160
clicking on an object 143
querying 161

Sequential file i/o 179–180
Server MapBasic statements 173
Set CoordSys statement 162, 203
Set Event Processing statement 134
Set File Timeout statement 164
Set Format statement 81
Set Map statement 132, 134, 194
Set Redistricter statement 136
Set Shade statement 132
Set Table statement 172
Set Target statement 199
Set Window statement 132, 224
Shade statement 132
Sharing conflicts 163
Shortcut keys

in dialogs 130
in menus 118

Shortcut menus
destroying 117
modifying 117

Simulating a menu selection 118
Size limitations 59
Size of text 189
Snap to Node 237
Sorting rows in a table 156
Source code

defined 297
Speed, improving

handler procedures 98
table manipulation 176
user interface 147

SPOT image files 167
Spreadsheet files, opening 151
SQL Select queries 156
Startup workspace 146
Statement, defined 297

Statement handle, defined 173
Statement number, defined 173
StaticText controls 125
Status bar help messages 144

in Integrated Mapping 237
Stop statement 104
Stopping a program 91
Storing points on an RDBMS table 282
Storing points on remote databases 175
Street addresses, finding 156
String concatenation

& operator 271
+ operator 271

String constants 80
String operators 83
String variables, fixed vs. variablelength 75
StringCompare() function 85
Structures 76
StyleAttr() function 189–191
Styles (Pen, Brush, Symbol, Font) 188
Styles, comparing 189
Sub procedures, See Procedures
Subselects 207
Subtotals, calculating 156
Symbol styles 188
SymbolPicker controls 126

T
Table names

determining table name from number (7.5) 277
Table structure

determining how many columns (7.5) 277
TableInfo() function 155, 173, 186
TableInfo() function (7.5) 277
Tables

adding dynamic columns 158
adding permanent columns 158
adding temporary columns 158
based on spreadsheets and database files 151
closing QueryN tables 160
column expressions 152
component files 166
Cosmetic 162
creating 157
joining 208
Layout 162
making mappable 157
metadata 169
number of open tables 159
Obj (object) column 155, 185
opening 150
raster image tables 167
reading values 152
row numbers 155
Selection 159
structure, modifying 157
structure, querying 159
writing values 157
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 306 MB_UG.pdf

User Guide Chapter GL: Index
Tables, querying
table information (7.5) 277

Targa files 167
Target objects 199
Technical Support

automated fax support 19
MapInfo Test Drive Center 18
services 17–18

TempFileName$() function 180
Text editors 61
Text height 189
Text objects 188, 198

See Objects
Text styles (Font) 188
Thematic maps 132
Thousand separators

in numeric constants 80
TIFF files 167
Timeout

DDE settings 219
ToggleButtons defined 138
Toolbars See

ButtonPads
ToolButtons defined 138
ToolHandler procedure 96, 139
ToolTips 144
Totals, calculating 156
Transparent fill

defined 298
Trapping runtime errors 106
TriggerControl() function 128
Type conversion 83
Type...End Type statement 76
Typographical conventions 16

U
UBound() function 75
Ungeocoding 186
Units of measure

area units 204
distance units 204
paper units 204

Update statement 157, 194–195, 197
Updating remote databases 175
User (Windows DLL) 212
User interface

ButtonPads 138
dialogs, custom 123
dialogs, standard 121
menus 111
overview 109
windows 131

Userdefined functions 99
Userdefined types 76

V
Variablelength string variables 75
Variables

declarations 74
defined 73
global 77
list of data types 74
object variables 185
reading another application’s globals 222
restrictions on names 74
style variables 190

Version 6.5, new features 278
Vertices

See Nodes
Visual Basic

sample programs 229, 261
Visual C++

getting started 254
sample programs 261

W
Warm links 223
While...Wend statement 91
Wildcards (string comparison) 84
WIN.INI file

DDE timeout setting 219
querying settings 214

WinChangedHandler procedure 96
WinClosedHandler procedure 96
Window identifiers 131
Window menu 70
WindowID() function 131
WindowInfo() function 131, 162
Windows, customizing

Browser 134
Graph 135
Info window 136
Layout 135
Map 132
Message 136
Redistricter 136
size and position 132

Windows, querying
map window settings (7.5) 277

WinFocusChangedHandler procedure 96
Within operator 86, 206
WKS files, opening 151
Workspaces

startup 146
using as sample programs 53

Write # statement 181

X
XLS files, opening 151
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 307 MB_UG.pdf

	Getting Started
	Hardware & Software Requirements
	Compatibility with Previous Versions

	Installing the MapBasic Development Environment
	Before You Begin
	Installation
	Starting MapBasic

	MapBasic File Names and File Types
	MapBasic Documentation Set
	MapBasic® Reference
	Installing Online Documentation

	Conventions Used in This Manual
	Terms
	Typographical Conventions
	Register Today!
	Working with Technical Support
	Before You Call
	The Support Tracking System
	Expected Response Time
	Exchanging Information
	Software Defects
	Other Resources
	MapInfo Test Drive Center
	MapInfo-L Archive Database
	MapInfo Automated Fax Support

	New and Enhanced MapBasic Statements and Functions
	New MapBasic Functions and Statements
	Enhanced MapBasic Functions and Statements
	Workspace Behavior
	Enabling Transparent Patterns on Same Layer
	Export Windows to Additional Formats

	A Quick Look at MapBasic
	Getting Started
	How Do I Create and Run a MapBasic Application?

	What Are the Key Features of MapBasic?
	MapBasic Lets You Customize MapInfo
	MapBasic Lets You Automate MapInfo
	MapBasic Provides Powerful Database-Access Tools
	MapBasic Lets You Connect MapInfo To Other Applications

	How Do I Learn MapBasic?
	MapBasic User Guide
	MapBasic Reference
	Sample Programs
	MapInfo Workspace Files
	Online Help

	The MapBasic Window in MapInfo
	Training and On-Site Consulting

	Using the Development Environment
	Introduction to MapBasic Development Environment
	Editing Your Program
	Keyboard Shortcuts
	Mouse Shortcuts

	Limitations of the MapBasic Text Editor

	Compiling Your Program
	A Note on Compilation Errors
	Running a Compiled Application
	Using Another Editor to Write MapBasic Programs
	Compiling Programs Written In Another Editor
	Compiling and Linking Programs From the Command Line

	Linking Multiple Modules Into a Single Project
	What is a MapBasic Project File?
	What Are The Benefits of Using Project Files?
	Examples of Project Files

	Creating a Project File
	Compiling and Linking a Project
	Opening Multiple Files

	Calling Functions or Procedures From Other Modules
	Sharing Variables With Other Modules
	Declaring Variables That Cannot Be Shared With Other Modules

	Menu Summary in MapBasic Development Environment
	The File Menu
	The Edit Menu
	The Search Menu
	The Project Menu
	The Window Menu
	The Help Menu

	MapBasic Fundamentals
	General Notes on MapBasic Syntax
	Comments
	Case-Sensitivity
	Continuing a Statement Across Multiple Lines
	Codes Defined In mapbasic.def
	Typing Statements Into the MapBasic Window
	Variables
	What Is a Variable?
	Declaring Variables and Assigning Values to Variables
	Variable Names
	Data Types

	Fixed-length and variable-length String variables
	Array Variables
	Custom Data Types (Data Structures)
	Global Variables
	Scope of Variables

	Expressions
	What is a Constant?
	What is an Operator?
	What is a Function Call?
	A Closer Look At Constants
	Variable Type Conversion
	A Closer Look At Operators
	MapBasic Operator Precedence

	Looping, Branching, and Other Flow-Control
	If...Then Statement
	Do Case Statement
	GoTo Statement
	For...Next Statement
	Do...Loop
	While...Wend Loop
	Ending Your Program
	Ending Your Program and MapInfo Professional

	Procedures
	Main Procedure
	Calling a Procedure
	Calling a Procedure That Has Parameters
	Passing Parameters By Reference
	Passing Parameters By Value
	Calling Procedures Recursively

	Procedures That Act As System Event Handlers
	What Is a System Event?
	What Is an Event Handler?
	When Is a System Event Handler Called?

	Tips for Handler Procedures
	Keep Handler Procedures Short
	Selecting Without Calling SelChangedHandler
	Preventing Infinite Loops
	Custom Functions
	Scope of Functions

	Compiler Instructions
	The Define Statement
	The Include Statement

	Program Organization

	Debugging and Trapping Runtime Errors
	Runtime Error Behavior
	Debugging a MapBasic Program
	Summary of the Debugging Process
	Limitations of the Stop Statement
	Other Debugging Tools

	Error Trapping
	Example of Error Trapping

	Creating the User Interface
	Introduction to MapBasic User Interface Principles
	Event-Driven Programming
	What Is an Event?
	What Happens When The User Generates A Menu Event?
	How Does a Program Handle ButtonPad Events?
	How Does a Program Handle Dialog Events?

	Menus
	Menu Fundamentals
	Adding New Items To A Menu
	Removing Items From A Menu
	Creating A New Menu
	Altering A Menu Item
	Re-Defining The Menu Bar
	Specifying Language-Independent Menu References
	Customizing MapInfo Professional’s Shortcut Menus
	Assigning One Handler Procedure To Multiple Menu Items
	Simulating Menu Selections
	Defining Shortcut Keys And Hot Keys
	Controlling Menus Through the MapInfo Professional Menus File

	Standard Dialog Boxes
	Displaying a Message
	Asking a Yes-or-No Question
	Selecting a File
	Indicating the Percent Complete
	Displaying One Row From a Table

	Custom Dialog Boxes
	Sizes and Positions of Controls
	Control Types
	Specifying a Control’s Initial Value
	Reading a Control’s Final Value
	Responding to User Actions by Calling a Handler Procedure
	Enabled / Disabled Controls
	Letting the User Choose From a List
	Managing MultiListBox Controls
	Specifying Shortcut Keys for Controls
	Modal vs. Modeless Dialog Boxes

	Terminating a Dialog Box

	Windows
	Specifying a Window’s Size and Position
	Map Windows
	Using Animation Layers to Speed Up Map Redraws
	Sample Program
	Performance Tips for Animation Layers
	Browser Windows
	Graph Windows
	Layout Windows
	Redistrict Windows
	Message Window

	ButtonPads (Toolbars)
	What Happens When The User Chooses A Button?
	MapBasic Statements Related To ButtonPads
	Create ButtonPad
	Alter ButtonPad
	Alter Button
	CommandInfo()
	ToolHandler
	Creating A Custom PushButton
	Adding A Button To The Main ButtonPad
	Creating A Custom ToolButton
	Choosing Icons for Custom Buttons
	Selecting Objects by Clicking With a ToolButton
	Including Standard Buttons in Custom ButtonPads
	Assigning Help Messages to Buttons
	Docking a ButtonPad to the Top of the Screen
	Other Features of ButtonPads

	Integrating Your Application Into MapInfo Professional
	Loading Applications Through the Startup Workspace
	Manipulating Workspaces through MapBasic

	Performance Tips for the User Interface
	Animation Layers
	Avoiding Unnecessary Window Redraws
	Purging the Message Window
	Suppressing Progress Bar Dialogs

	Working With Tables
	Opening Tables Through MapBasic
	Determining Table Names at Runtime
	Opening Two Tables With The Same Name
	Opening Non-Native Files As Tables
	Creating A Report File From An Open MapInfo Table

	Reading Row-And-Column Values From a Table
	Alias Data Types as Column References
	Scope
	Using the “RowID” Column Name To Refer To Row Numbers
	Using the “Obj” Column Name To Refer To Graphic Objects
	Finding Map Addresses In Tables
	Geocoding
	Performing SQL Select Queries
	Error Checking for Table and Column References

	Writing Row-And-Column Values to a Table
	Creating New Tables
	Modifying a Table’s Structure
	Creating Indexes and Making Tables Mappable
	Reading A Table’s Structural Information
	Working With The Selection Table
	Cleaning Up “QueryN” Tables

	Changing the Selection
	Updating the Currently-Selected Rows
	Using the Selection for User Input

	Accessing the Cosmetic Layer
	Accessing Layout Windows
	Multi-User Editing
	The Rules of Multi-User Editing
	How to Prevent Conflicts When Reading Shared Data

	Preventing Conflicts When Writing Shared Data
	Opening a Table for Writing

	Files that Make Up a Table
	Raster Image Tables
	Working With Metadata
	What is Metadata?
	What Do Metadata Keys Look Like?
	Examples of Working With Metadata

	Working With Seamless Tables
	What is a Seamless Table?
	How Do Seamless Tables Work?
	MapBasic Syntax for Seamless Tables
	Limitations of Seamless Tables

	Accessing DBMS Data
	How Remote Data Commands Communicate with a Database
	Connecting and Disconnecting

	Accessing/Updating Remote Databases with Linked Tables
	Live Access to Remote Databases

	Performance Tips for Table Manipulation
	Minimize Transaction-File Processing
	Use Indices Where Appropriate
	Using Sub-Selects
	Optimized Select Statements
	Using Update Statements

	File Input/Output
	Overview of File Input/Output
	Sequential File I/O
	Random File I/O
	Binary File I/O

	Platform-Specific & International Character Sets
	File Information Functions

	Graphical Objects
	Using Object Variables
	Using the “Obj” Column
	Creating an Object Column
	Limitations of the Object Column

	Querying An Object’s Attributes
	Object Styles (Pen, Brush, Symbol, Font)
	Understanding Font Styles
	Style Variables
	Selecting Objects of a Particular Style

	Creating New Objects
	Object-Creation Statements
	Object-Creation Functions
	Creating Objects With Variable Numbers of Nodes
	Storing Objects In a Table

	Creating Objects Based On Existing Objects
	Creating a Buffer
	Using Union, Intersection, and Merge
	Creating Offset Copies

	Modifying Objects
	General Procedure for Modifying an Object
	Repositioning An Object
	Moving Objects and Object Nodes
	Modifying An Object’s Pen, Brush, Font, or Symbol Style
	Converting An Object To A Region or Polyline
	Erasing Part Of An Object
	Points Of Intersection

	Working With Map Labels
	Turning Labels On
	Turning Labels Off
	Editing Individual Labels
	Querying Labels
	Other Examples of the Set Map Statement
	Differences Between Labels and Text Objects

	Coordinates and Units of Measure
	Units of Measure

	Advanced Geographic Queries
	Using Geographic Comparison Operators
	Querying Objects in Tables
	Using Geographic SQL Queries With Subselects
	Using Geographic Joins
	Proportional Data Aggregation

	Advanced Features of Microsoft Windows
	Declaring and Calling Dynamic Link Libraries (DLLs)
	Specifying the Library
	Passing Parameters
	Calling Standard Libraries
	Calling a DLL Routine by an Alias
	String Arguments

	Array Arguments
	User-Defined Types
	Logical Arguments
	Handles
	Example: Calling a Routine in KERNEL
	Troubleshooting Tips for DLLs

	Creating Custom Button Icons and Draw Cursors
	Reusing Standard Icons
	Custom Icons
	Custom Draw Cursors for Windows

	Inter-Application Communication Using DDE
	Overview of DDE Conversations
	How MapBasic Acts as a DDE Client
	How MapInfo Acts as a DDE Server
	How MapInfo Handles DDE Execute Messages
	Communicating With Visual Basic Using DDE
	Examples of DDE Conversations
	DDE Advise Links

	Incorporating Windows Help Into Your Application

	Integrated Mapping
	What Does Integrated Mapping Look Like?
	Conceptual Overview of Integrated Mapping
	Technical Overview of Integrated Mapping
	System Requirements
	Other Technical Notes

	A Short Sample Program: “Hello, (Map of) World”
	A Closer Look at Integrated Mapping
	Starting MapInfo Professional
	Sending Commands to MapInfo
	Querying Data from MapInfo
	Reparenting MapInfo Windows
	Reparenting Legends, Raster Dialogs and Other Special Windows
	Allowing the User to Resize a Map Window
	Integrating MapInfo Toolbar Buttons

	Customizing MapInfo’s Shortcut Menus
	Printing an Integrated MapInfo Window
	Detecting runtime Errors
	Terminating MapInfo

	Terminating Your Visual Basic Program
	A Note About MapBasic Command Strings
	A Note About Dialog Boxes
	A Note About Accelerator Keys

	Using Callbacks to Retrieve Info from MapInfo
	Technical Requirements for Callbacks
	General Procedure for Using OLE Callbacks
	Processing the Data Sent to a Callback
	C/C++ Syntax for Standard Notification Callbacks

	Alternatives to Using OLE Callbacks
	DDE Callbacks
	MBX Callbacks
	Online Help

	Displaying Standard MapInfo Help
	Disabling Online Help
	Displaying a Custom Help File

	Related MapBasic Statements and Functions
	OLE Automation Object Models
	Properties of the Application Object
	Properties of the MBApplications Collection
	Properties of an Object in MBApplications
	Properties of the MBGlobals Collection
	Properties of an Object in MBGlobals
	Properties of the MIMapGen Object
	Methods of the MIMapGen Object
	Properties of the MISearchInfo Object
	Methods of the MIRow Object
	Properties of the MIField Object
	Properties of the MISelection Object

	MapInfo Command-Line Arguments
	Getting Started with Integrated Mapping and Visual C++ with MFC
	Create a New Project

	Add OLE Automation Client Support
	Create the MapInfo Support class, and create an instance of it
	Test your work
	Redefine the Shortcut Menus
	Reparenting MapInfo’s Dialogs
	Adding a Map to your View
	Adding a Map Menu Command

	Adding Toolbar Buttons and Handlers
	Using Exception Handling to Catch MapInfo Errors
	Add OLE Automation Server Support
	Adding the WindowContentsChanged Callback

	Learning More

	Sample Programs
	Samples\Delphi Folder
	Samples DLLEXAMP Folder
	Samples\MFC Folder
	Samples\PwrBldr Folder
	Samples\VB4 Folder
	Samples\VB6 Folder

	Summary of Operators
	Numeric Operators
	Comparison Operators
	Logical Operators
	Geographic Operators
	Precedence

	Automatic Type Conversions

	List of MapBasic Changes by Version
	Features Introduced or Changed in MapBasic 7.8
	Features Introduced in MapBasic 7.5
	Features Introduced in MapBasic 7.0

	Supported ODBC Table Types
	Making a Remote Table Mappable
	Prerequisites for Storing/Retrieving Spatial Data
	Creating a MapInfo Map Catalog

	Data Setting and Management
	Upgrading Applications from Versions Prior to 6.5
	A Glossary for Upgrading Applications

	Application Data Files and Directories
	Default Preferences Paths
	Registry Changes
	Installer Requirements and Group Policies
	MapBasic 6.5
	MapBasic 7.0

	MapBasic Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

